login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A373946
Number of primitive polynomials of third degree over GF(m) with vanishing quadratic term with m = m(n) = A000961(n), for n >= 2.
2
1, 1, 0, 4, 3, 18, 8, 16, 18, 48, 48, 27, 80, 48, 108, 108, 72, 300, 144, 224, 180, 308, 192, 336, 560, 240, 648, 420, 576, 540, 648, 768, 1080, 1200, 912, 1360, 1008, 1352, 1188, 1584, 960, 2340, 1620, 4410, 2112, 2432, 1980, 2952, 1560, 2592, 2025, 4592, 2448, 4872, 4576
OFFSET
2,4
COMMENTS
Apparently, a(n) = A373514(n) * A000010( 3 * A000961(n) - 3 ) * A025474(n) / 2, for n >= 2.
LINKS
EXAMPLE
For n=5, m=5, there are 20 primitive polynomials over GF(5) of the form x^3+a*x^2+b*x+c. Among these, 4 polynomials have a=0: x^3+3*x+2, x^3+3*x+3, x^3+4*x+2, and x^3+4*x+3. Thus, a(5) = 4.
PROG
(PARI)
is_max_o = (x1, x0, m, e)-> {
for(i = 1, #e, if(x1^e[i] == x0, return(0))); x1^m == x0;
}
count_them = (q)-> {
z = ffprimroot(ffgen(q, 'c));
m = q^3 - 1; f = factor(m); d = #f~;
e = vector(d, i, m/f[d + 1 - i, 1]);
co = vector(q - 1, i, z^(i - 1));
r = 0;
for(a = 1, q - 1,
for(b = 1, q - 1,
p = co[1]*x^3 + co[a]*x + co[b];
x1 = Mod(x, p); x0 = x1^0;
if(is_max_o(x1, x0, m, e) && polisirreducible(p), r += 1)
)
);
r;
}
print1(count_them(2));
for(q = 3, 64, if(isprimepower(q), print1(", ", count_them(q))))
CROSSREFS
KEYWORD
nonn
AUTHOR
Martin Becker, Jun 23 2024
STATUS
approved