login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A319213
a(n) = phi(n^3 - 1)/3 where phi is A000010.
5
2, 4, 12, 20, 56, 36, 144, 96, 216, 144, 520, 240, 840, 480, 576, 816, 1568, 756, 2520, 1232, 1872, 1560, 4400, 1440, 4320, 3024, 4860, 3168, 7056, 2640, 9000, 5984, 7920, 6144, 10080, 4752, 17784, 7992, 13104, 9184, 22080, 7560, 23688, 12960, 14688, 15840, 33120
OFFSET
2,1
LINKS
Eric Weisstein's World of Mathematics, Totient Function.
FORMULA
Sum_{k=1..n} a(k) = c * n^4 + O((n*log(n))^3), where c = (2/27) * Product_{p prime == 1 (mod 3)} (1 - 3/p^2) * Product_{p prime == 2 (mod 3)} (1 - 1/p^2) = 0.047313356295... . - Amiram Eldar, Dec 09 2024
MATHEMATICA
EulerPhi[Range[2, 50]^3 - 1]/3 (* Paolo Xausa, Jun 18 2024 *)
PROG
(PARI) {a(n) = eulerphi(n^3-1)/3}
CROSSREFS
Row 3 of A369291.
Cf. A000010, A068601 (n^3-1).
phi(n^b - 1)/b: A319210 (b=2), this sequence (b=3), A319214 (b=5).
Sequence in context: A297184 A218871 A121569 * A099603 A319615 A375742
KEYWORD
nonn,easy
AUTHOR
Seiichi Manyama, Sep 13 2018
STATUS
approved