OFFSET
1,2
COMMENTS
Rowmotion on a semidistributive lattice is obtained by sending an element with a specified join-canonical decomposition to the unique element with the same meet-canonical decomposition (under the bijection between join- and meet-irreducible elements). a(n) is the maximum orbit size of rowmotion on the symmetric group.
LINKS
Emily Barnard, The canonical join complex, arXiv preprint arXiv:1610.05137 [math.CO], 2016.
Hugh Thomas and Nathan Williams, Rowmotion in slow motion, arXiv preprint arXiv:1712.10123 [math.CO], 2017-2018. See 7.11 p. 26.
Hugh Thomas and Nathan Williams, Independence Posets, arXiv preprint arXiv:1805.00815 [math.CO], 2018.
EXAMPLE
a(3)=4 because of the orbit [213, 312, 132, 231].
a(4)=12 because of the orbit [1342, 3241, 2314, 4213, 1243, 3421, 3124, 4132, 1423, 2431, 2134, 4312].
PROG
(Sage)
from sage.combinat.cyclic_sieving_phenomenon import orbit_decomposition
def AA(n):
L=WeylGroup(['A', n]).weak_lattice()
lower=dict([(l, Set(L.canonical_joinands(l))) for l in L])
J, M=L.join_irreducibles(), L.meet_irreducibles()
meet_to_join=dict([(m, L.meet([l for l in J if L.le(l, L.upper_covers(m)[0]) and not(L.le(l, m))])) for m in M])
upper=dict([(Set([meet_to_join[i] for i in L.canonical_meetands(l)]), l) for l in L])
return max(map(len, orbit_decomposition(L, lambda w: upper[lower[w]] )))
CROSSREFS
KEYWORD
nonn,hard,more
AUTHOR
Nathan Williams, Sep 24 2018
EXTENSIONS
a(7) from Lucas A. Brown, May 29 2023
STATUS
approved