The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A275735 Prime-factorization representations of "factorial base level polynomials": a(0) = 1; for n >= 1, a(n) = 2^A257511(n) * A003961(a(A257684(n))). 21
1, 2, 2, 4, 3, 6, 2, 4, 4, 8, 6, 12, 3, 6, 6, 12, 9, 18, 5, 10, 10, 20, 15, 30, 2, 4, 4, 8, 6, 12, 4, 8, 8, 16, 12, 24, 6, 12, 12, 24, 18, 36, 10, 20, 20, 40, 30, 60, 3, 6, 6, 12, 9, 18, 6, 12, 12, 24, 18, 36, 9, 18, 18, 36, 27, 54, 15, 30, 30, 60, 45, 90, 5, 10, 10, 20, 15, 30, 10, 20, 20, 40, 30, 60, 15, 30, 30, 60, 45, 90, 25, 50, 50, 100, 75 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
These are prime-factorization representations of single-variable polynomials where the coefficient of term x^(k-1) (encoded as the exponent of prime(k) in the factorization of n) is equal to the number of times a nonzero digit k occurs in the factorial base representation of n. See the examples.
LINKS
FORMULA
a(0) = 1; for n >= 1, a(n) = 2^A257511(n) * A003961(a(A257684(n))).
Other identities and observations. For all n >= 0:
a(n) = A275734(A225901(n)).
A001221(a(n)) = A275806(n).
A001222(a(n)) = A060130(n).
A048675(a(n)) = A275729(n).
A051903(a(n)) = A264990(n).
A008683(a(A265349(n))) = -1 or +1 for all n >= 0.
A008683(a(A265350(n))) = 0 for all n >= 1.
From Antti Karttunen, Apr 03 2022: (Start)
A342001(a(n)) = A351954(n).
a(n) = A181819(A276076(n)).
(End)
EXAMPLE
For n = 0 whose factorial base representation (A007623) is also 0, there are no nonzero digits at all, thus there cannot be any prime present in the encoding, and a(0) = 1.
For n = 1 there is just one 1, thus a(1) = prime(1) = 2.
For n = 2 ("10", there is just one 1-digit, thus a(2) = prime(1) = 2.
For n = 3 ("11") there are two 1-digits, thus a(3) = prime(1)^2 = 4.
For n = 18 ("300") there is just one 3, thus a(18) = prime(3) = 5.
For n = 19 ("301") there is one 1 and one 3, thus a(19) = prime(1)*prime(3) = 2*5 = 10.
For n = 141 ("10311") there are three 1's and one 3, thus a(141) = prime(1)^3 * prime(3) = 2^3 * 5^1 = 40.
PROG
(Scheme, with memoization-macro definec)
(definec (A275735 n) (if (zero? n) 1 (* (A000079 (A257511 n)) (A003961 (A275735 (A257684 n))))))
(Python)
from sympy import prime
from operator import mul
import collections
def a007623(n, p=2): return n if n<p else a007623(n//p, p+1)*10 + n%p
def a(n):
y=collections.Counter(map(int, list(str(a007623(n)).replace("0", "")))).most_common()
return 1 if n==0 else reduce(mul, [prime(y[i][0])**y[i][1] for i in range(len(y))])
print([a(n) for n in range(101)]) # Indranil Ghosh, Jun 19 2017
(PARI)
A276076(n) = { my(i=0, m=1, f=1, nextf); while((n>0), i=i+1; nextf = (i+1)*f; if((n%nextf), m*=(prime(i)^((n%nextf)/f)); n-=(n%nextf)); f=nextf); m; };
A181819(n) = factorback(apply(e->prime(e), (factor(n)[, 2])));
A275735(n) = A181819(A276076(n)); \\ Antti Karttunen, Apr 03 2022
CROSSREFS
Cf. also A275725, A275733, A275734 for other such prime factorization encodings of A060117/A060118-related polynomials, and also A276076.
Differs from A227154 for the first time at n=18, where a(18) = 5, while A227154(18) = 4.
Sequence in context: A248746 A227154 A324655 * A328835 A076435 A257010
KEYWORD
nonn,base,look
AUTHOR
Antti Karttunen, Aug 09 2016
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 17 11:50 EDT 2024. Contains 373445 sequences. (Running on oeis4.)