OFFSET
0,4
LINKS
FORMULA
EXAMPLE
n A007623(n) a(n) [highest number of times any nonzero digit occurs].
0 = 0 0 (because no nonzero digits present)
1 = 1 1
2 = 10 1
3 = 11 2
4 = 20 1
5 = 21 1
6 = 100 1
7 = 101 2
8 = 110 2
9 = 111 3
10 = 120 1
11 = 121 2
12 = 200 1
13 = 201 1
14 = 210 1
15 = 211 2
16 = 220 2
17 = 221 2
18 = 300 1
and for n=63 we have:
63 = 2211 2.
MATHEMATICA
a[n_] := Module[{k = n, m = 2, r, s = {}}, While[{k, r} = QuotientRemainder[k, m]; k != 0|| r != 0, AppendTo[s, r]; m++]; Max[Tally[Select[s, # > 0 &]][[;; , 2]]]]; a[0] = 0; Array[a, 100, 0] (* Amiram Eldar, Jan 24 2024 *)
PROG
(Scheme with memoization-macro definec)
(Python)
from sympy import prime, factorint
from operator import mul
import collections
def a007623(n, p=2): return n if n<p else a007623(n//p, p+1)*10 + n%p
def a051903(n): return 0 if n==1 else max(factorint(n).values())
def a275735(n):
y=collections.Counter(map(int, list(str(a007623(n)).replace("0", "")))).most_common()
return 1 if n==0 else reduce(mul, [prime(y[i][0])**y[i][1] for i in range(len(y))])
def a(n): return 0 if n==0 else a051903(a275735(n))
print([a(n) for n in range(201)]) # Indranil Ghosh, Jun 20 2017
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Antti Karttunen, Dec 22 2015
EXTENSIONS
Name changed by Antti Karttunen, Aug 15 2016
STATUS
approved