login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A277326 LCM of nonzero coefficients of the n-th Stern polynomial. 6
1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 3, 1, 2, 1, 1, 1, 2, 2, 3, 2, 12, 3, 6, 1, 6, 2, 3, 1, 2, 1, 1, 1, 2, 2, 6, 2, 20, 3, 12, 2, 4, 12, 30, 3, 20, 6, 6, 1, 6, 6, 15, 2, 60, 3, 12, 1, 6, 2, 3, 1, 2, 1, 1, 1, 2, 2, 6, 2, 60, 6, 12, 2, 12, 20, 40, 3, 140, 12, 12, 2, 12, 4, 40, 12, 60, 30, 140, 3, 60, 20, 40, 6, 20, 6, 6, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,6
COMMENTS
a(n) = the least common multiple of nonzero terms on the n-th row of A125184.
LINKS
FORMULA
a(n) = A072411(A260443(n)).
a(2n) = a(n).
a(n) <= A277325(n).
PROG
(Scheme)
(define (A277326 n) (A072411 (A260443 n)))
;; A standalone implementation:
(define (A277326 n) (reduce lcm 1 (filter positive? (A260443as_coeff_list n))))
(definec (A260443as_coeff_list n) (cond ((zero? n) (list)) ((= 1 n) (list 1)) ((even? n) (cons 0 (A260443as_coeff_list (/ n 2)))) (else (add_two_lists (A260443as_coeff_list (/ (- n 1) 2)) (A260443as_coeff_list (/ (+ n 1) 2))))))
(define (add_two_lists nums1 nums2) (let ((len1 (length nums1)) (len2 (length nums2))) (cond ((< len1 len2) (add_two_lists nums2 nums1)) (else (map + nums1 (append nums2 (make-list (- len1 len2) 0)))))))
CROSSREFS
Differs from A277325 for the first time at n=13, where a(13) = 2, while A277325(13) = 4.
After n=0, differs from A277315 for the first time at n=21, where a(21) = 12, while A277315(21) = 4.
Sequence in context: A262561 A264990 A277315 * A050431 A051574 A029386
KEYWORD
nonn
AUTHOR
Antti Karttunen, Oct 13 2016
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 14 06:54 EDT 2024. Contains 375920 sequences. (Running on oeis4.)