OFFSET
0,7
COMMENTS
a(n) = number of column positions where both row n and n+1 of A125184 have nonzero number present (when scanned from left), in other words, the number of k such that the term t^k has a nonzero coefficient in both Stern polynomials, B(n,t) and B(n+1,t).
LINKS
Antti Karttunen, Table of n, a(n) for n = 0..8192
PROG
(Scheme)
;; A standalone implementation:
(define (A277327 n) (length (filter positive? (gcd_of_exp_lists (A260443as_coeff_list n) (A260443as_coeff_list (+ 1 n))))))
(definec (A260443as_coeff_list n) (cond ((zero? n) (list)) ((= 1 n) (list 1)) ((even? n) (cons 0 (A260443as_coeff_list (/ n 2)))) (else (add_two_lists (A260443as_coeff_list (/ (- n 1) 2)) (A260443as_coeff_list (/ (+ n 1) 2))))))
(define (add_two_lists nums1 nums2) (let ((len1 (length nums1)) (len2 (length nums2))) (cond ((< len1 len2) (add_two_lists nums2 nums1)) (else (map + nums1 (append nums2 (make-list (- len1 len2) 0)))))))
(define (gcd_of_exp_lists nums1 nums2) (let ((len1 (length nums1)) (len2 (length nums2))) (cond ((< len1 len2) (gcd_of_exp_lists nums2 nums1)) (else (map min nums1 (append nums2 (make-list (- len1 len2) 0)))))))
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Oct 13 2016
STATUS
approved