login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A277327 Number of distinct primes dividing gcd(A260443(n), A260443(n+1)): a(n) = A001221(A277198(n)). 5
0, 0, 1, 0, 0, 1, 2, 0, 0, 2, 2, 1, 1, 2, 3, 0, 0, 3, 2, 1, 1, 2, 3, 1, 1, 3, 3, 2, 2, 3, 4, 0, 0, 4, 3, 2, 2, 3, 3, 1, 1, 3, 3, 2, 2, 3, 4, 1, 1, 4, 3, 2, 2, 3, 4, 2, 2, 4, 4, 3, 3, 4, 5, 0, 0, 5, 4, 3, 3, 4, 4, 2, 2, 4, 3, 2, 2, 3, 4, 1, 1, 4, 3, 2, 2, 3, 4, 2, 2, 4, 4, 3, 3, 4, 5, 1, 1, 5, 4, 3, 3, 4, 4, 2, 2, 4, 4, 3, 3, 4, 5, 2, 2, 5, 4, 3, 3, 4, 5, 3, 3 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,7

COMMENTS

a(n) = number of column positions where both row n and n+1 of A125184 have nonzero number present (when scanned from left), in other words, the number of k such that the term t^k has a nonzero coefficient in both Stern polynomials, B(n,t) and B(n+1,t).

LINKS

Antti Karttunen, Table of n, a(n) for n = 0..8192

FORMULA

a(n) = A001221(A277198(n)).

a(n) <= A277328(n).

PROG

(Scheme)

(define (A277327 n) (A001221 (A277198 n)))

;; A standalone implementation:

(define (A277327 n) (length (filter positive? (gcd_of_exp_lists (A260443as_coeff_list n) (A260443as_coeff_list (+ 1 n))))))

(definec (A260443as_coeff_list n) (cond ((zero? n) (list)) ((= 1 n) (list 1)) ((even? n) (cons 0 (A260443as_coeff_list (/ n 2)))) (else (add_two_lists (A260443as_coeff_list (/ (- n 1) 2)) (A260443as_coeff_list (/ (+ n 1) 2))))))

(define (add_two_lists nums1 nums2) (let ((len1 (length nums1)) (len2 (length nums2))) (cond ((< len1 len2) (add_two_lists nums2 nums1)) (else (map + nums1 (append nums2 (make-list (- len1 len2) 0)))))))

(define (gcd_of_exp_lists nums1 nums2) (let ((len1 (length nums1)) (len2 (length nums2))) (cond ((< len1 len2) (gcd_of_exp_lists nums2 nums1)) (else (map min nums1 (append nums2 (make-list (- len1 len2) 0)))))))

CROSSREFS

Cf. A001221, A125184, A260443, A277198, A277328.

Sequence in context: A230419 A146165 A308831 * A277328 A318178 A283307

Adjacent sequences:  A277324 A277325 A277326 * A277328 A277329 A277330

KEYWORD

nonn

AUTHOR

Antti Karttunen, Oct 13 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 5 10:45 EST 2019. Contains 329751 sequences. (Running on oeis4.)