The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A277198 a(n) = gcd(A260443(n), A260443(n+1)). 8
1, 1, 3, 1, 1, 3, 15, 1, 1, 15, 15, 5, 5, 15, 105, 1, 1, 105, 75, 5, 5, 375, 525, 7, 7, 525, 525, 35, 35, 105, 1155, 1, 1, 1155, 525, 245, 35, 2625, 18375, 7, 7, 91875, 13125, 35, 245, 18375, 40425, 11, 11, 40425, 25725, 245, 245, 128625, 202125, 77, 77, 40425, 40425, 385, 385, 1155, 15015, 1, 1, 15015, 5775, 2695, 2695, 1414875, 1414875, 77, 77 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
LINKS
FORMULA
a(n) = gcd(A260443(n), A260443(n+1)).
PROG
(Scheme) (define (A277198 n) (gcd (A260443 (+ 1 n)) (A260443 n)))
;; A more practical version, needing only an implementation of A000040:
(define (A277198 n) (product_primes_to_kth_powers (gcd_of_exp_lists (A260443as_coeff_list n) (A260443as_coeff_list (+ 1 n)))))
(define (product_primes_to_kth_powers nums) (let loop ((p 1) (nums nums) (i 1)) (cond ((null? nums) p) (else (loop (* p (expt (A000040 i) (car nums))) (cdr nums) (+ 1 i))))))
(definec (A260443as_coeff_list n) (cond ((zero? n) (list)) ((= 1 n) (list 1)) ((even? n) (cons 0 (A260443as_coeff_list (/ n 2)))) (else (add_two_lists (A260443as_coeff_list (/ (- n 1) 2)) (A260443as_coeff_list (/ (+ n 1) 2))))))
(define (add_two_lists nums1 nums2) (let ((len1 (length nums1)) (len2 (length nums2))) (cond ((< len1 len2) (add_two_lists nums2 nums1)) (else (map + nums1 (append nums2 (make-list (- len1 len2) 0)))))))
(define (gcd_of_exp_lists nums1 nums2) (let ((len1 (length nums1)) (len2 (length nums2))) (cond ((< len1 len2) (gcd_of_exp_lists nums2 nums1)) (else (map min nums1 (append nums2 (make-list (- len1 len2) 0)))))))
(PARI) A=[];
A003961(n)=my(f=factor(n)); f[, 1] = apply(p->nextprime(p+1), f[, 1]); factorback(f)
A260443(n)=if(n<3, return(n+1)); if(#A<n, A=concat(A, vector(n-#A))); if(A[n], return(A[n])); A[n]=if(n%2, A260443(n\2)*A260443(n\2+1), A003961(A260443(n/2)))
a(n)=gcd(A260443(n), A260443(n+1)) \\ Charles R Greathouse IV, Oct 13 2016
CROSSREFS
Cf. A277327, A277328 (number of prime factors).
Sequence in context: A016563 A025254 A245537 * A242735 A177058 A176921
KEYWORD
nonn
AUTHOR
Antti Karttunen, Oct 10 2016
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 25 04:47 EDT 2024. Contains 372782 sequences. (Running on oeis4.)