login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A277200
Even terms in A260442 (in A260443).
5
2, 6, 18, 30, 90, 210, 270, 450, 630, 2310, 6750, 6930, 9450, 15750, 20250, 22050, 30030, 47250, 90090, 330750, 510510, 727650, 1212750, 1531530, 1653750, 2668050, 3543750, 4961250, 8489250, 9699690, 18191250, 24806250, 25467750, 29099070, 40020750, 53156250, 57881250, 104053950, 173423250, 173643750
OFFSET
1,1
COMMENTS
All odd terms larger > 1 in A260442 can be obtained from these terms by shifting their prime factorization some number of steps towards larger primes with A003961.
PROG
(PARI)
allocatemem(2^30);
A061395(n) = if(1==n, 0, primepi(vecmax(factor(n)[, 1]))); \\ After M. F. Hasler's code for A006530.
A048675(n) = my(f = factor(n)); sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2; \\ Michel Marcus, Oct 10 2016
A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From Michel Marcus
A260443(n) = if(n<2, n+1, if(n%2, A260443(n\2)*A260443(n\2+1), A003961(A260443(n\2))));
isA277200(n) = (!(n%2) && (omega(n) == A061395(n)) && (A260443(A048675(n)) == n));
i=1; n=0; while(i < 100, n++; if(isA277200(n), write("b277200.txt", i, " ", n); i++));
CROSSREFS
Sequence A277324 sorted into ascending order.
Subsequence of A055932.
Cf. A002110, A277317 (subsequences, apart from their initial terms).
Also all terms of A277318 apart from initial 3 are included in this sequence.
Sequence in context: A197168 A373515 A288815 * A277324 A034881 A352813
KEYWORD
nonn
AUTHOR
Antti Karttunen, Oct 14 2016
STATUS
approved