login
A242735
Array read by antidiagonals: form difference table of the sequence of rationals 0, 0 followed by A001803(n)/A046161(n), then extract numerators.
0
0, 0, 0, 1, 1, 1, -3, -1, 1, 3, 15, 3, -1, 3, 15, -35, -5, 1, -1, 5, 35, 315, 35, -5, 3, -5, 35, 315, -693, -63, 7, -3, 3, -7, 63, 693, 3003, 231, -21, 7, -5, 7, -21, 231, 3003, -6435, -429, 33, -9, 5, -5, 9, -33, 429, 6435
OFFSET
0,7
COMMENTS
Difference table of c(n)/d(n) = 0, 0, followed by A001803(n)/A046161(n):
0, 0, 1, 3/2, 15/8, 35/16, 315/128, ...
0, 1, 1/2, 3/8, 5/16, 35/128, 63/256, ...
1, -1/2, -1/8, -1/16, -5/128, -7/256, -21/1024, ...
-3/2, 3/8, 1/16, 3/128, 3/256, 7/1024, 9/2048, ...
15/8, -5/16, -5/128, -3/256, -5/1024, -5/2048, -45/32768, ...
-35/16, 35/128, 7/256, 7/1024, 5/2048, 35/32768, 35/65536, ... etc.
d(n) = 1, 1, followed by A046161(n).
c(n)/d(n) is an autosequence (a sequence whose inverse binomial transform is the signed sequence) of the second kind (the main diagonal is equal to the first upper diagonal multiplied by 2). See A187791.
Antidiagonal denominators: repeat n+1 times d(n).
Second row without 0: Lorentz (gamma) factor = A001790(n)/A046161(n).
Third row: Lorentz beta factor = 1 followed by -A098597(n). Lorbeta(n) in A206771.
EXAMPLE
a(n) as a triangle:
0;
0, 0;
1, 1, 1;
-3, -1, 1, 3;
15, 3, -1, 3, 15;
etc.
MATHEMATICA
c[n_] := (2*n-3)*Binomial[2*(n-2), n-2]/4^(n-2) // Numerator; d[n_] := Binomial[2*(n-2), n-2]/4^(n-2) // Denominator; Clear[a]; a[0, k_] := c[k]/d[k]; a[n_, k_] := a[n, k] = a[n-1, k+1] - a[n-1, k]; Table[a[n-k, k] // Numerator, {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 17 2014 *)
CROSSREFS
Sequence in context: A025254 A245537 A277198 * A177058 A176921 A000503
KEYWORD
sign,frac,tabl
AUTHOR
Paul Curtz, May 21 2014
STATUS
approved