OFFSET
0,7
COMMENTS
0, 0, 1, 3/2, 15/8, 35/16, 315/128, ...
0, 1, 1/2, 3/8, 5/16, 35/128, 63/256, ...
1, -1/2, -1/8, -1/16, -5/128, -7/256, -21/1024, ...
-3/2, 3/8, 1/16, 3/128, 3/256, 7/1024, 9/2048, ...
15/8, -5/16, -5/128, -3/256, -5/1024, -5/2048, -45/32768, ...
-35/16, 35/128, 7/256, 7/1024, 5/2048, 35/32768, 35/65536, ... etc.
d(n) = 1, 1, followed by A046161(n).
c(n)/d(n) is an autosequence (a sequence whose inverse binomial transform is the signed sequence) of the second kind (the main diagonal is equal to the first upper diagonal multiplied by 2). See A187791.
Antidiagonal denominators: repeat n+1 times d(n).
EXAMPLE
a(n) as a triangle:
0;
0, 0;
1, 1, 1;
-3, -1, 1, 3;
15, 3, -1, 3, 15;
etc.
MATHEMATICA
c[n_] := (2*n-3)*Binomial[2*(n-2), n-2]/4^(n-2) // Numerator; d[n_] := Binomial[2*(n-2), n-2]/4^(n-2) // Denominator; Clear[a]; a[0, k_] := c[k]/d[k]; a[n_, k_] := a[n, k] = a[n-1, k+1] - a[n-1, k]; Table[a[n-k, k] // Numerator, {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 17 2014 *)
CROSSREFS
KEYWORD
AUTHOR
Paul Curtz, May 21 2014
STATUS
approved