login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A146165 Expansion of q^(1/4) * eta(q^5)^2 * eta(q^20) / (eta(q^4) * eta(q^10)^2) in powers of q. 1
1, 0, 0, 0, 1, -2, 0, 0, 2, -2, 1, 0, 3, -4, 1, -2, 5, -6, 2, -2, 10, -10, 3, -4, 14, -16, 5, -6, 21, -24, 11, -10, 31, -34, 15, -18, 45, -50, 23, -26, 67, -70, 34, -38, 93, -104, 50, -56, 130, -140, 77, -80, 179, -196, 107, -120, 245, -264, 151, -164, 338, -360, 210, -230, 451, -488, 290, -314, 604, -650, 404 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,6

LINKS

Table of n, a(n) for n=0..70.

FORMULA

Euler transform of period 20 sequence [ 0, 0, 0, 1, -2, 0, 0, 1, 0, 0, 0, 1, 0, 0, -2, 1, 0, 0, 0, 0, ...].

EXAMPLE

q + q^17 - 2*q^21 + 2*q^33 - 2*q^37 + q^41 + 3*q^49 - 4*q^53 + q^57 + ...

MATHEMATICA

QP = QPochhammer; s = QP[q^5]^2*(QP[q^20]/(QP[q^4]*QP[q^10]^2)) + O[q]^80; CoefficientList[s, q] (* Jean-Fran├žois Alcover, Nov 25 2015 *)

PROG

(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^5 + A)^2 * eta(x^20 + A) / (eta(x^4 + A) * eta(x^10 + A)^2), n))}

CROSSREFS

Convolution inverse of A146164.

Sequence in context: A329767 A107502 A230419 * A308831 A277327 A277328

Adjacent sequences:  A146162 A146163 A146164 * A146166 A146167 A146168

KEYWORD

sign

AUTHOR

Michael Somos, Oct 27 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 10 18:10 EST 2019. Contains 329901 sequences. (Running on oeis4.)