The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A107502 Theta series of quadratic form with Gram matrix [ 4, 1, 0, -1; 1, 10, 0, 3; 0, 0, 26, 13; -1, 3, 13, 36]. 6
1, 0, 2, 0, 0, 2, 2, 0, 4, 0, 0, 2, 0, 2, 0, 6, 0, 0, 10, 8, 14, 12, 0, 0, 20, 0, 6, 0, 16, 0, 0, 8, 18, 18, 12, 0, 0, 12, 0, 8, 0, 6, 0, 0, 30, 22, 20, 10, 0, 0, 22, 0, 14, 0, 38, 0, 0, 22, 30, 18, 48, 0, 0, 30, 0, 12, 0, 22, 0, 0, 38, 16, 50, 30, 0, 0, 46, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
G.f. is theta_6 in the Parry 1979 reference on page 166. This theta series is an element of the space of modular forms on Gamma_0(169) of weight 2 and dimension 21. - Andy Huchala, May 13 2023
LINKS
W. R. Parry, A negative result on the representation of modular forms by theta series, J. Reine Angew. Math., 310 (1979), 151-170.
EXAMPLE
G.f. = 1 + 2*q^4 + 2*q^10 + 2*q^12 + ...
PROG
(Magma)
prec := 90;
ls := [[4, 1, 0, -1], [1, 10, 0, 3], [0, 0, 26, 13], [-1, 3, 13, 36]];
S := Matrix(ls);
L := LatticeWithGram(S);
M := ThetaSeriesModularFormSpace(L);
B := Basis(M, prec);
T<q> := ThetaSeries(L, 48);
coeffs := [Coefficients(T)[2*i-1] : i in [1..23]];
Coefficients(&+[coeffs[i]*B[i] :i in [1..13]]+&+[coeffs[i+1]*B[i] :i in [14..19]] + coeffs[22]*B[20] + coeffs[23]*B[21]); // Andy Huchala, May 13 2023
CROSSREFS
Sequence in context: A284059 A329767 A356018 * A230419 A146165 A308831
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, May 28 2005
EXTENSIONS
Name clarified and more terms from Andy Huchala, May 13 2023
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 13 09:03 EDT 2024. Contains 373383 sequences. (Running on oeis4.)