The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A356018 a(n) is the number of evil divisors (A001969) of n. 8
 0, 0, 1, 0, 1, 2, 0, 0, 2, 2, 0, 3, 0, 0, 3, 0, 1, 4, 0, 3, 1, 0, 1, 4, 1, 0, 3, 0, 1, 6, 0, 0, 2, 2, 1, 6, 0, 0, 2, 4, 0, 2, 1, 0, 5, 2, 0, 5, 0, 2, 3, 0, 1, 6, 1, 0, 2, 2, 0, 9, 0, 0, 3, 0, 2, 4, 0, 3, 2, 2, 1, 8, 0, 0, 4, 0, 1, 4, 0, 5, 3, 0, 1, 3, 3, 2 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,6 COMMENTS a(n) = 0 iff n is in A093696. LINKS Table of n, a(n) for n=1..86. FORMULA a(n) = A000005(n) - A227872(n). EXAMPLE 12 has 6 divisors: {1, 2, 3, 4, 6, 12} of which three {3, 6, 12} have an even number of 1's in their binary expansion with 11, 110 and 11100 respectively; hence a(12) = 3. MAPLE A356018 := proc(n) local a, d ; a := 0 ; for d in numtheory[divisors](n) do if isA001969(d) then a := a+1 ; end if; end do: a ; end proc: seq(A356018(n), n=1..200) ; # R. J. Mathar, Aug 07 2022 MATHEMATICA a[n_] := DivisorSum[n, 1 &, EvenQ[DigitCount[#, 2, 1]] &]; Array[a, 100] (* Amiram Eldar, Jul 23 2022 *) PROG (Python) from sympy import divisors def c(n): return bin(n).count("1")&1 == 0 def a(n): return sum(1 for d in divisors(n, generator=True) if c(d)) print([a(n) for n in range(1, 101)]) # Michael S. Branicky, Jul 23 2022 (PARI) a(n) = my(v = valuation(n, 2)); n>>=v; d=divisors(n); sum(i=1, #d, bitand(hammingweight(d[i]), 1) == 0) * (v+1) \\ David A. Corneth, Jul 23 2022 CROSSREFS Cf. A000005, A001969, A093688, A093696 (location of 0s), A227872, A356019, A356020. Similar sequences: A083230, A087990, A087991, A332268, A355302. Sequence in context: A275966 A284059 A329767 * A107502 A230419 A146165 Adjacent sequences: A356015 A356016 A356017 * A356019 A356020 A356021 KEYWORD nonn,easy,base AUTHOR Bernard Schott, Jul 23 2022 EXTENSIONS More terms from David A. Corneth, Jul 23 2022 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 12 17:26 EDT 2024. Contains 374251 sequences. (Running on oeis4.)