login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A275966
a(n) is the real part of -I*Sum_{d|n}(mobius(d)*I^(n/d)), I=sqrt(-1), mobius(n) is A008683.
3
1, -1, -2, 0, 0, 2, -2, 0, 2, 0, -2, 0, 0, 2, 0, 0, 0, -2, -2, 0, 4, 2, -2, 0, 0, 0, -2, 0, 0, 0, -2, 0, 4, 0, 0, 0, 0, 2, 0, 0, 0, -4, -2, 0, 0, 2, -2, 0, 2, 0, 0, 0, 0, 2, 0, 0, 4, 0, -2, 0, 0, 2, -4, 0, 0, -4, -2, 0, 4, 0, -2, 0, 0, 0, 0, 0, 4, 0, -2, 0, 2
OFFSET
1,3
COMMENTS
It seems the nonzero coefficients are powers of 2.
This function is multiplicative with a(p^n) = Re(I^(p^n+1) - I^(p^(n-1)+1)).
LINKS
FORMULA
a(p^n) = (-1)^n*2, for prime p=3 mod 4.
a(p^n) = 0, for prime p=1 mod 4.
a(2) = -1, a(2^n) = 0 for n > 1.
a(n) = -Re(I*Sum_{d|n}(mobius(d)*I^(n/d))).
Dirichlet g.f.: Sum_{n >= 1} a(n)/n^s = beta(s)/zeta(s), where beta(s) and zeta(s) are Dirichlet Beta and Riemann zeta functions accordingly.
Sum_{n >= 1} a(n)/n^s = (1-2^(-s))*Product_{p=3 mod 4}(p^s-1)/(p^s+1), where p runs over prime numbers.
Sum_{n>=1} mobius(n)/(z^n-I) = Sum_{n >= 1} b(n)/z^n. a(n)=Re(b(n)).
Sum_{n>=1} a(n)/(z^n-1) = z/(z^2+1)
Sum_{d|n} a(d) = A101455(n). - Gevorg Hmayakyan, Dec 27 2017
EXAMPLE
a(4) = -Re(I*(mobius(1)*I^4 + mobius(2)*I^2 + mobius(4)*I)) = Re((I^4-I^2)*I) = Re(2*I) = 0.
MAPLE
a(n):=-Re(I*add(numtheory:-mobius(d)*I^(n/d), d = numtheory:-divisors(n))).
MATHEMATICA
Table[-Re[I * Sum[MoebiusMu[d] * (I^(n/d)), {d, Divisors[n]}]], {n, 81}] (* Indranil Ghosh, Mar 19 2017 *)
PROG
(PARI) a(n)=my(f=factor(n)); prod(i=1, #f~, if(f[i, 1]==2, if(f[i, 2]==1, -1, 0), if(f[i, 1]%4==3, 2*(-1)^f[i, 2], 0))) \\ Charles R Greathouse IV, Mar 22 2017
CROSSREFS
Sequence in context: A337509 A144734 A029361 * A284059 A329767 A356018
KEYWORD
sign,mult
AUTHOR
Gevorg Hmayakyan, Mar 19 2017
STATUS
approved