login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A275968
Smaller of two consecutive primes p and q such that c(p) = c(q), where c(n) = A008908(n) is the length of x, f(x), f(f(x)), ... , 1 in the Collatz conjecture.
1
173, 409, 419, 421, 439, 487, 521, 557, 571, 617, 761, 887, 919, 1009, 1039, 1117, 1153, 1171, 1217, 1327, 1373, 1549, 1559, 1571, 1657, 1693, 1709, 1721, 1733, 1783, 1831, 1861, 1901, 1993, 1997, 2053, 2089, 2339, 2393, 2521, 2539, 2647, 2657, 2677, 2693, 2777
OFFSET
1,1
COMMENTS
If x is even f(x) = x/2 else f(x) = 3x + 1.
LINKS
EXAMPLE
a(1) = p = 173; q = 179
c(p) = c(q) = 32
MATHEMATICA
t = Table[Length@ NestWhileList[If[EvenQ@ #, #/2, 3 # + 1] &, n, # != 1 &] - 1, {n, 10^4}]; Prime@ Flatten@ Position[#, k_ /; Length@ k == 1] &@ Map[Union@ Part[t, #] &, #] &@ Partition[#, 2, 1] &@ Prime@ Range@ 410 (* Michael De Vlieger, Sep 01 2016 *)
PROG
(PARI) A008908(n)=my(c=1); while(n>1, n=if(n%2, 3*n+1, n/2); c++); c
t=A008908(p=2); forprime(q=3, 1e4, tt=A008908(q); if(t==tt, print1(p", ")); p=q; t=tt) \\ Charles R Greathouse IV, Sep 01 2016
(Python)
import sympy
def lcs(n):
....a=1
....while n>1:
........if n%2==0:
............n=n//2
........else:
............n=(3*n)+1
........a=a+1
....return(a)
m=2
while m>0:
....n=sympy.nextprime(m)
....if lcs(m)==lcs(n):
........print(m, )
....m=n
# Abhiram R Devesh, Sep 02 2016
CROSSREFS
Cf. A006577 (Collatz trajectory lengths), A078417, A008908.
Sequence in context: A060332 A142022 A130338 * A142782 A142250 A059243
KEYWORD
nonn,easy
AUTHOR
Abhiram R Devesh, Aug 15 2016
STATUS
approved