The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A275968 Smaller of two consecutive primes p and q such that c(p) = c(q), where c(n) = A008908(n) is the length of x, f(x), f(f(x)), ... , 1 in the Collatz conjecture. 1
 173, 409, 419, 421, 439, 487, 521, 557, 571, 617, 761, 887, 919, 1009, 1039, 1117, 1153, 1171, 1217, 1327, 1373, 1549, 1559, 1571, 1657, 1693, 1709, 1721, 1733, 1783, 1831, 1861, 1901, 1993, 1997, 2053, 2089, 2339, 2393, 2521, 2539, 2647, 2657, 2677, 2693, 2777 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS If x is even f(x) = x/2 else f(x) = 3x + 1. LINKS Abhiram R Devesh, Table of n, a(n) for n = 1..10000 EXAMPLE a(1) = p = 173; q = 179 c(p) = c(q) = 32 MATHEMATICA t = Table[Length@ NestWhileList[If[EvenQ@ #, #/2, 3 # + 1] &, n, # != 1 &] - 1, {n, 10^4}]; Prime@ Flatten@ Position[#, k_ /; Length@ k == 1] &@ Map[Union@ Part[t, #] &, #] &@ Partition[#, 2, 1] &@ Prime@ Range@ 410 (* Michael De Vlieger, Sep 01 2016 *) PROG (PARI) A008908(n)=my(c=1); while(n>1, n=if(n%2, 3*n+1, n/2); c++); c t=A008908(p=2); forprime(q=3, 1e4, tt=A008908(q); if(t==tt, print1(p", ")); p=q; t=tt) \\ Charles R Greathouse IV, Sep 01 2016 (Python) import sympy def lcs(n): ....a=1 ....while n>1: ........if n%2==0: ............n=n//2 ........else: ............n=(3*n)+1 ........a=a+1 ....return(a) m=2 while m>0: ....n=sympy.nextprime(m) ....if lcs(m)==lcs(n): ........print(m, ) ....m=n # Abhiram R Devesh, Sep 02 2016 CROSSREFS Cf. A006577 (Collatz trajectory lengths), A078417, A008908. Sequence in context: A060332 A142022 A130338 * A142782 A142250 A059243 Adjacent sequences:  A275965 A275966 A275967 * A275969 A275970 A275971 KEYWORD nonn,easy AUTHOR Abhiram R Devesh, Aug 15 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 23 02:41 EDT 2021. Contains 347609 sequences. (Running on oeis4.)