The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A008908 (1 + number of halving and tripling steps to reach 1 in the Collatz (3x+1) problem), or -1 if 1 is never reached. 40
 1, 2, 8, 3, 6, 9, 17, 4, 20, 7, 15, 10, 10, 18, 18, 5, 13, 21, 21, 8, 8, 16, 16, 11, 24, 11, 112, 19, 19, 19, 107, 6, 27, 14, 14, 22, 22, 22, 35, 9, 110, 9, 30, 17, 17, 17, 105, 12, 25, 25, 25, 12, 12, 113, 113, 20, 33, 20, 33, 20, 20, 108, 108, 7, 28, 28, 28, 15, 15, 15, 103 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS The number of steps (iterations of the map A006370) to reach 1 is given by A006577, this sequence counts 1 more. - M. F. Hasler, Nov 05 2017 When Collatz 3N+1 function is seen as an isometry over the dyadics, the halving step necessarily following each tripling is not counted, hence N -> N/2, if even, but N -> (3N+1)/2, if odd. Counting iterations of this map until reaching 1 leads to sequence A064433. [Michael Vielhaber (vielhaber(AT)gmail.com), Nov 18 2009] REFERENCES R. K. Guy, Unsolved Problems in Number Theory, E16. LINKS Reinhard Zumkeller, Table of n, a(n) for n = 1..10000 J. C. Lagarias, The 3x+1 problem and its generalizations, Amer. Math. Monthly, 92 (1985), 3-23. Nitrxgen, Collatz Calculator Wikipedia, Collatz conjecture FORMULA a(n) = A006577(n) + 1. a(n) = f(n,1) with f(n,x) = if n=1 then x else f(A006370(n),x+1). a(A033496(n)) = A159999(A033496(n)). - Reinhard Zumkeller, May 04 2009 a(n) = A006666(n) + A078719(n). a(n) = length of n-th row in A070165. - Reinhard Zumkeller, May 11 2013 MAPLE a:= proc(n) option remember; 1+`if`(n=1, 0,       a(`if`(n::even, n/2, 3*n+1)))     end: seq(a(n), n=1..100);  # Alois P. Heinz, Jan 29 2021 MATHEMATICA Table[Length[NestWhileList[If[EvenQ[ # ], #/2, 3 # + 1] &, i, # != 1 &]], {i, 75}] PROG (Haskell) a008908 = length . a070165_row -- Reinhard Zumkeller, May 11 2013, Aug 30, Jul 19 2011 (PARI) a(n)=my(c=1); while(n>1, n=if(n%2, 3*n+1, n/2); c++); c \\ Charles R Greathouse IV, May 18 2015 (Python) def a(n):     if n==1: return 1     x=1     while True:         if n%2==0: n//=2         else: n = 3*n + 1         x+=1         if n<2: break     return x print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Apr 15 2017 CROSSREFS Cf. A006577, A006370, A006667, A075677. Sequence in context: A169844 A076123 A021783 * A050077 A261715 A309640 Adjacent sequences:  A008905 A008906 A008907 * A008909 A008910 A008911 KEYWORD nonn,nice,look AUTHOR EXTENSIONS More terms from Larry Reeves (larryr(AT)acm.org), Apr 27 2001 "Escape clause" added to definition by N. J. A. Sloane, Jun 06 2017 Edited by M. F. Hasler, Nov 05 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 3 16:27 EDT 2022. Contains 355055 sequences. (Running on oeis4.)