login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A064433
Number of iterations of A064455 to reach 2 (or 1 in the case of 1).
8
1, 1, 2, 6, 3, 5, 7, 12, 4, 14, 6, 11, 8, 8, 13, 13, 5, 10, 15, 15, 7, 7, 12, 12, 9, 17, 9, 71, 14, 14, 14, 68, 6, 19, 11, 11, 16, 16, 16, 24, 8, 70, 8, 21, 13, 13, 13, 67, 10, 18, 18, 18, 10, 10, 72, 72, 15, 23, 15, 23, 15, 15, 69, 69, 7, 20, 20, 20, 12, 12, 12, 66, 17, 74, 17
OFFSET
1,3
COMMENTS
Similar to 3x+1 series (A008908). Does this sequence converge to 2 for all values of n (true for all values of n up to 100000)? The inverse sequence using next n = n-int(n/2) for n even and n+int(n/2) for n odd leads to 3 (?) possible end sequences (1), (5, 7, 10) and (17, 25, 37, 55, 82, 41, 61, 91, 136, 68, 34)
Starting with a number n, the next value generated is n+int(n/2) if n is even, n-int(n/2) if n is odd; a(n) is the number of iteration for the initial value n to reach the limit of 1 to 2
Collatz's 3N+1 function as isometry over the dyadics is N->N/2 if even, but N->(3N+1)/2 if odd, including the (necessary) halving into each tripling step. Counting steps until reaching 1 in this way leads to this sequence instead of A008908. - Michael Vielhaber (vielhaber(AT)gmail.com), Nov 18 2009
The value at each step of a trajectory starting with n (n>1) is equal to the value plus one at the same step of the row starting with (n-1) of the irregular triangle of the abbreviated (Terras-modified) Collatz sequence (A070168). - K. Spage, Aug 07 2014
LINKS
M. del P. Canales Chacon and M. J. Vielhaber, Structural and Computational Complexity of Isometries and Their Shift Commutators, Electr. Colloq. on Computational Cpx., ECCC TR04-057, 2004. [From Michael Vielhaber (vielhaber(AT)gmail.com), Nov 18 2009]
FORMULA
a(n) = A006666(n-1) + 1. - K. Spage, Aug 04 2014
EXAMPLE
a(4) = 6. Starting with 4, 4 is even so the next number is 4+int(4/2) = 6, 6 is even so next number is 6+int(6/2) = 9, 9 is odd so next number is 9-int(9/2) = 5, 5 is odd so next number is 5-int(5/2) = 3, 3 is odd so next number is 3-int(3/2)=2, so giving a sequence of 4,6,9,5,3,2: 6 numbers.
a(5) = 3. Starting with 5, A064455(5) = 3, A064455(3) = 2, so giving a trajectory of 5,3,2: 3 numbers. - K. Spage, Aug 07 2014
MATHEMATICA
Table[Length@ NestWhileList[If[EvenQ@ #, 3 #/2, (# + 1)/2] &, n, # != 1 + Boole[n > 1] &], {n, 75}] (* Michael De Vlieger, Sep 24 2016 *)
PROG
(PARI) A064455(n) = {if(n%2, (n + 1)/2, 3*n/2)}
A064433(n) = {my(c=1); if(n==1, 1, while(n!=2, n=A064455(n); c++); c)} \\ K. Spage, Aug 07 2014
CROSSREFS
KEYWORD
nonn,easy,look
AUTHOR
Jonathan Ayres (Jonathan.ayres(AT)btinternet.com), Oct 01 2001
STATUS
approved