The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A070168 Irregular triangle of Terras-modified Collatz problem. 16
 1, 2, 1, 3, 5, 8, 4, 2, 1, 4, 2, 1, 5, 8, 4, 2, 1, 6, 3, 5, 8, 4, 2, 1, 7, 11, 17, 26, 13, 20, 10, 5, 8, 4, 2, 1, 8, 4, 2, 1, 9, 14, 7, 11, 17, 26, 13, 20, 10, 5, 8, 4, 2, 1, 10, 5, 8, 4, 2, 1, 11, 17, 26, 13, 20, 10, 5, 8, 4, 2, 1, 12, 6, 3, 5, 8, 4, 2, 1, 13, 20, 10, 5, 8, 4, 2, 1, 14, 7, 11 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS The row length of this irregular triangle is A006666(n) + 1 = A064433(n+1), n >= 1. - Wolfdieter Lang, Mar 20 2014 LINKS Reinhard Zumkeller, Rows n = 1..250 of triangle, flattened J. C. Lagarias, The 3x+1 Problem and its Generalizations, Amer. Math. Monthly 92 (1985) 3-23. R. Terras, A stopping time problem on the positive integers, Acta Arith. 30 (1976) 241-252. Eric Weisstein's World of Mathematics, Collatz Problem Wikipedia, Collatz conjecture FORMULA From Wolfdieter Lang, Mar 20 2014: (Start) See Lagarias, pp. 4-7, eqs. (2.1), (2.4) with (2.5) and (2.6). T(n,k) = T^{(k)}(n), with the iterations of the Terras-modified Collatz map: T(n) = n/2 if n is even and otherwise (3*n+1)/2, n >= 1. T^{(0)}(n) = n. T(n,k) = lambda(n,k)*n + rho(n,k), with lambda(n,k) = (3^X(n,k,-1))/2^k and rho(n,k) = sum(x(n,j)*(3^X(n,k,j))/ 2^(k-j), j=0..(k-1)) with X(n,k,j) = sum(x(n,j+p), p=1.. (k-1-j)) where x(n,j) = T^{(j)}(n) (mod 2). The parity sequence suffices to determine T(n,k). (End) EXAMPLE The irregular triangle begins: n\k 0 1 2 3 4 5 6 8 9 10 11 12 13 14 ... 1: 1 2: 2 1 3: 3 5 8 4 2 1 4: 4 2 1 5: 5 8 4 2 1 6: 6 3 5 8 4 2 1 7: 7 11 17 26 13 20 10 5 8 4 2 1 8: 8 4 2 1 9: 9 14 7 11 17 26 13 20 10 5 8 4 2 1 10: 10 5 8 4 2 1 11: 11 17 26 13 20 10 5 8 4 2 1 12: 12 6 3 5 8 4 2 1 13: 13 20 10 5 8 4 2 1 14: 14 7 11 17 26 13 20 10 5 8 4 2 1 15: 15 23 35 53 80 40 20 10 5 8 4 2 1 ... formatted by Wolfdieter Lang, Mar 20 2014 ------------------------------------------------------------- MATHEMATICA f[n_] := If[EvenQ[n], n/2, (3 n + 1)/2]; Table[NestWhileList[f, n, # != 1 &], {n, 1, 30}] // Grid (* Geoffrey Critzer, Oct 18 2014 *) PROG (Haskell) a070168 n k = a070168_tabf !! (n-1) !! (k-1) a070168_tabf = map a070168_row [1..] a070168_row n = (takeWhile (/= 1) \$ iterate a014682 n) ++ [1] a070168_list = concat a070168_tabf -- Reinhard Zumkeller, Oct 03 2014 (Python) def a(n): if n==1: return [1] l=[n, ] while True: if n%2==0: n//=2 else: n = (3*n + 1)//2 l.append(n) if n<2: break return l for n in range(1, 16): print(a(n)) # Indranil Ghosh, Apr 15 2017 CROSSREFS Cf. A070165 (ordinary Collatz case). Cf. A014682, A248573, A285098 (row sums). Sequence in context: A319153 A286390 A135017 * A246646 A198094 A263047 Adjacent sequences: A070165 A070166 A070167 * A070169 A070170 A070171 KEYWORD nonn,easy,tabf AUTHOR Eric W. Weisstein, Apr 23 2002 EXTENSIONS Name shortened, tabl changed into tabf, Cf. added by Wolfdieter Lang, Mar 20 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 28 23:06 EDT 2023. Contains 363028 sequences. (Running on oeis4.)