login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A070169
Rounded total surface area of a regular tetrahedron with edge length n.
9
0, 2, 7, 16, 28, 43, 62, 85, 111, 140, 173, 210, 249, 293, 339, 390, 443, 501, 561, 625, 693, 764, 838, 916, 998, 1083, 1171, 1263, 1358, 1457, 1559, 1665, 1774, 1886, 2002, 2122, 2245, 2371, 2501, 2634, 2771, 2912, 3055, 3203, 3353, 3507, 3665, 3826, 3991
OFFSET
0,2
COMMENTS
a(n) is the integer k that minimizes |k/n^2 - sqrt(3)|. - Clark Kimberling, Oct 11 2017
REFERENCES
S. Selby, editor, CRC Basic Mathematical Tables, CRC Press, 1970, pp. 10-11.
LINKS
Eric Weisstein's World of Mathematics, Tetrahedron
Eric Weisstein's World of Mathematics, Platonic Solid
FORMULA
a(n) = round(n^2 * sqrt(3)).
a(n) = A000194(3*n^4). - Christian Krause, Aug 04 2021; corrected by Chai Wah Wu, Jun 19 2024
EXAMPLE
a(3)=16 because round(3^2*sqrt(3)) = round(9*1.73205...) = round(15.5884...) = 16.
MATHEMATICA
Round[Sqrt[3]#]&/@(Range[0, 50]^2) (* Harvey P. Dale, Sep 24 2012 *)
PROG
(PARI) for(n=0, 100, print1(round(n^2*sqrt(3)), ", "))
(Magma) [Round(n^2 * Sqrt(3)): n in [0..50]]; // Vincenzo Librandi, May 21 2011
(Python)
from math import isqrt
def A070169(n): return (m:=isqrt(k:=3*n**4))+(k-m*(m+1)>=1) # Chai Wah Wu, Jun 19 2024
CROSSREFS
Cf. A033581 (cube), A071396 (octahedron), A071397 (dodecahedron), A071398 (icosahedron), A071399 (volume of tetrahedron).
Sequence in context: A083508 A048231 A357577 * A293410 A348270 A162420
KEYWORD
easy,nonn
AUTHOR
Rick L. Shepherd, Apr 24 2002
STATUS
approved