login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Irregular triangle of Terras-modified Collatz problem.
17

%I #36 Mar 19 2021 10:46:28

%S 1,2,1,3,5,8,4,2,1,4,2,1,5,8,4,2,1,6,3,5,8,4,2,1,7,11,17,26,13,20,10,

%T 5,8,4,2,1,8,4,2,1,9,14,7,11,17,26,13,20,10,5,8,4,2,1,10,5,8,4,2,1,11,

%U 17,26,13,20,10,5,8,4,2,1,12,6,3,5,8,4,2,1,13,20,10,5,8,4,2,1,14,7,11

%N Irregular triangle of Terras-modified Collatz problem.

%C The row length of this irregular triangle is A006666(n) + 1 = A064433(n+1), n >= 1. - _Wolfdieter Lang_, Mar 20 2014

%H Reinhard Zumkeller, <a href="/A070168/b070168.txt">Rows n = 1..250 of triangle, flattened</a>

%H J. C. Lagarias, <a href="http://www.jstor.org/stable/2322189">The 3x+1 Problem and its Generalizations</a>, Amer. Math. Monthly 92 (1985) 3-23.

%H R. Terras, <a href="http://matwbn.icm.edu.pl/ksiazki/aa/aa30/aa3034.pdf">A stopping time problem on the positive integers</a>, Acta Arith. 30 (1976) 241-252.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/CollatzProblem.html">Collatz Problem</a>

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Collatz_conjecture">Collatz conjecture</a>

%F From _Wolfdieter Lang_, Mar 20 2014: (Start)

%F See Lagarias, pp. 4-7, eqs. (2.1), (2.4) with (2.5) and (2.6).

%F T(n,k) = T^{(k)}(n), with the iterations of the Terras-modified Collatz map: T(n) = n/2 if n is even and otherwise (3*n+1)/2, n >= 1. T^{(0)}(n) = n.

%F T(n,k) = lambda(n,k)*n + rho(n,k), with lambda(n,k) = (3^X(n,k,-1))/2^k and rho(n,k) = sum(x(n,j)*(3^X(n,k,j))/ 2^(k-j), j=0..(k-1)) with X(n,k,j) = sum(x(n,j+p), p=1.. (k-1-j)) where x(n,j) = T^{(j)}(n) (mod 2). The parity sequence suffices to determine T(n,k).

%F (End)

%e The irregular triangle begins:

%e n\k 0 1 2 3 4 5 6 8 9 10 11 12 13 14 ...

%e 1: 1

%e 2: 2 1

%e 3: 3 5 8 4 2 1

%e 4: 4 2 1

%e 5: 5 8 4 2 1

%e 6: 6 3 5 8 4 2 1

%e 7: 7 11 17 26 13 20 10 5 8 4 2 1

%e 8: 8 4 2 1

%e 9: 9 14 7 11 17 26 13 20 10 5 8 4 2 1

%e 10: 10 5 8 4 2 1

%e 11: 11 17 26 13 20 10 5 8 4 2 1

%e 12: 12 6 3 5 8 4 2 1

%e 13: 13 20 10 5 8 4 2 1

%e 14: 14 7 11 17 26 13 20 10 5 8 4 2 1

%e 15: 15 23 35 53 80 40 20 10 5 8 4 2 1

%e ... formatted by _Wolfdieter Lang_, Mar 20 2014

%e -------------------------------------------------------------

%t f[n_] := If[EvenQ[n], n/2, (3 n + 1)/2];

%t Table[NestWhileList[f, n, # != 1 &], {n, 1, 30}] // Grid (* _Geoffrey Critzer_, Oct 18 2014 *)

%o (Haskell)

%o a070168 n k = a070168_tabf !! (n-1) !! (k-1)

%o a070168_tabf = map a070168_row [1..]

%o a070168_row n = (takeWhile (/= 1) $ iterate a014682 n) ++ [1]

%o a070168_list = concat a070168_tabf

%o -- _Reinhard Zumkeller_, Oct 03 2014

%o (Python)

%o def a(n):

%o if n==1: return [1]

%o l=[n, ]

%o while True:

%o if n%2==0: n//=2

%o else: n = (3*n + 1)//2

%o l.append(n)

%o if n<2: break

%o return l

%o for n in range(1, 16): print(a(n)) # _Indranil Ghosh_, Apr 15 2017

%Y Cf. A070165 (ordinary Collatz case).

%Y Cf. A014682, A248573, A285098 (row sums).

%K nonn,easy,tabf

%O 1,2

%A _Eric W. Weisstein_, Apr 23 2002

%E Name shortened, tabl changed into tabf, Cf. added by _Wolfdieter Lang_, Mar 20 2014