OFFSET
1,2
COMMENTS
Or, possible peak values in 3x+1 trajectories: 1,2 and m=16k+4,16k+8,16k but not for all k; those 4k numbers [like m=16k+12 and others] which cannot be such peaks are listed in A087252.
Possible values of A025586(m) in increasing order. See A275109 (number of times each value of a(n) occurs in A025586). - Jaroslav Krizek, Jul 17 2016
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 1..10000 (first 2000 terms from T. D. Noe)
Hartmut F. W. Hoft, initial Collatz fans
FORMULA
Max(A070165(a(n),k): k=1..A008908(a(n))) = A070165(a(n),1) = a(n). - Reinhard Zumkeller, Oct 22 2015
EXAMPLE
These peak values occur in 1, 3, 6, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 21, 22, 27, 30, 39, 44, 71, 75, 1579 [3x+1]-iteration trajectories started with different initial values. This list most probably is incomplete.
From Hartmut F. W. Hoft, Jun 24 2016: (Start)
Let n be the maximum in some Collatz trajectory and let F(n), the initial fan of n, be the set of all initial values less than or equal to n whose Collatz trajectories lead to n as their maximum. Then the size of F(n) never equals 2, 4, 5, 7 or 10 (see the link).
Conjecture: Every number k > 10 occurs as the size of F(n) for some n.
Fans F(n) of size k, for all 10 < k < 355, exist for 4 <= n <= 50,000,000. The largest fan in this range, F(41163712), has size 7450.
(End)
MATHEMATICA
Collatz[a0_Integer, maxits_:1000] := NestWhileList[If[EvenQ[ # ], #/2, 3# + 1] &, a0, Unequal[ #, 1, -1, -10, -34] &, 1, maxits]; (* Collatz[n] function definition by Eric Weisstein *)
Select[Range[324], Max[Collatz[#]] == # &] (* T. D. Noe, Feb 28 2013 *)
PROG
(Haskell)
a033496 n = a033496_list !! (n-1)
a033496_list = 1 : filter f [2, 4 ..] where
f x = x == maximum (takeWhile (/= 1) $ iterate a006370 x)
-- Reinhard Zumkeller, Oct 22 2015
(Magma) Set(Sort([Max([k eq 1 select n else IsOdd(Self(k-1)) and not IsOne(Self(k-1)) select 3*Self(k-1)+1 else Self(k-1) div 2: k in [1..5*n]]): n in [1..2^10] | Max([k eq 1 select n else IsOdd(Self(k-1)) and not IsOne(Self(k-1)) select 3*Self(k-1)+1 else Self(k-1) div 2: k in [1..5*n]]) le 2^10])) // Jaroslav Krizek, Jul 17 2016
(Python)
def a(n):
if n<2: return [1]
l=[n, ]
while True:
if n%2==0: n//=2
else: n = 3*n + 1
if n not in l:
l.append(n)
if n<2: break
else: break
return l
print([n for n in range(1, 501) if max(a(n)) == n]) # Indranil Ghosh, Apr 14 2017
CROSSREFS
KEYWORD
nonn,nice,easy
AUTHOR
STATUS
approved