login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A320425
Numbers k such that sigma(sigma(k^4)) == 0 (mod k^2).
1
1, 2, 4, 8, 16, 19, 38, 76, 152, 304, 608, 1216, 1824, 3744, 3840, 4864, 6400, 7904, 11520, 14592, 19200, 21888, 23712, 24320, 25536, 32768, 33696, 34560, 43776, 71136, 72960, 80640, 102144, 103680, 114688, 121600, 134400, 134784, 213408, 218880, 306432, 311296, 364800, 403200
OFFSET
1,2
COMMENTS
Inspired by Allan C. Wechsler in seqfan list, Jan 07 2019.
Are 1 and 19 the only odd terms?
LINKS
Robert G. Wilson v, Table of n, a(n) for n = 1..70
MATHEMATICA
fQ[n_] := Mod[DivisorSigma[1, DivisorSigma[1, n^4]], n^2] == 0; Select[Range@ 476671, fQ]
PROG
(PARI) isok(n) = (sigma(sigma(n^4)) % n^2) == 0; \\ Michel Marcus, Jan 09 2019
CROSSREFS
Cf. A202994 (sigma(n^4)).
Sequence in context: A184986 A018547 A018383 * A051513 A087257 A033496
KEYWORD
nonn
AUTHOR
Robert G. Wilson v, Jan 08 2019
STATUS
approved