OFFSET
0,1
COMMENTS
From Hartmut F. W. Hoft, Jun 24 2016: (Start)
The sequence has the quasiperiod 6, x, 8, 6, y, 8, 6, 9, z of length 9 starting at index 0 where x, y, z > 10; in addition, a(3*9*n+1) = 12, a(3*9*n+4) = 13 and a(3*9*n+8) = 11 for all n>=0; proof by induction (see this link) as in the link in A087256 based on the modular identities in the link in A033496.
LINKS
Hartmut F. W. Hoft, identities to prove for quasi period 9
FORMULA
a(n) = A087256(6n+4).
EXAMPLE
a(1) = 12, i.e. the number of initial values for 2^10, since 804 -> 402 -> 201 -> 604 -> 302 -> 151 -> 454 -> 227 -> 682 -> 341 -> 1024 and 908 -> (454 -> ... -> 1024) are the two maximal trajectories containing all 12 initial values. a(8) = 11 since 2^(6*8+4) has 11 different initial values for Collatz trajectories leading to it. - Hartmut F. W. Hoft, Jun 24 2016
MATHEMATICA
trajectory[start_] := NestWhileList[If[OddQ[#], 3#+1, #/2]&, start, #!=1&]
fanSize[max_] := Module[{active={max}, fan={}, current}, While[active!={}, current=First[active]; active=Rest[active]; AppendTo[fan, current]; If[2*current<=max, AppendTo[active, 2*current]]; If[Mod[current, 3]==1 && OddQ[(current-1)/3] && current>4, AppendTo[active, (current-1)/3]]]; Length[fan]]/; max==Max[trajectory[max]]
a105730[low_, high_] := Map[fanSize[2^(6#+4)]&, Range[low, high]]
a105730[0, 89] (* Hartmut F. W. Hoft, Jun 24 2016 *)
CROSSREFS
KEYWORD
easy,nonn,less
AUTHOR
David Wasserman, Apr 18 2005
STATUS
approved