login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A105730
Number of different initial values for 3x+1 trajectories in which the largest term appearing in the iteration is 2^(6n+4).
4
6, 12, 8, 6, 13, 8, 6, 9, 11, 6, 21, 8, 6, 78, 8, 6, 9, 13, 6, 15, 8, 6, 16, 8, 6, 9, 20, 6, 12, 8, 6, 13, 8, 6, 9, 11, 6, 14, 8, 6, 32, 8, 6, 9, 32, 6, 23, 8, 6, 24, 8, 6, 9, 14, 6, 12, 8, 6, 13, 8, 6, 9, 11, 6, 14, 8, 6, 19, 8, 6, 9, 13, 6, 80, 8, 6, 29, 8, 6, 9, 18, 6, 12, 8, 6, 13, 8, 6, 9, 11
OFFSET
0,1
COMMENTS
From Hartmut F. W. Hoft, Jun 24 2016: (Start)
The sequence has the quasiperiod 6, x, 8, 6, y, 8, 6, 9, z of length 9 starting at index 0 where x, y, z > 10; in addition, a(3*9*n+1) = 12, a(3*9*n+4) = 13 and a(3*9*n+8) = 11 for all n>=0; proof by induction (see this link) as in the link in A087256 based on the modular identities in the link in A033496.
Conjecture: All numbers greater than 10 appear in the sequence (see also A033496 and A233293). (End)
FORMULA
a(n) = A087256(6n+4).
EXAMPLE
a(1) = 12, i.e. the number of initial values for 2^10, since 804 -> 402 -> 201 -> 604 -> 302 -> 151 -> 454 -> 227 -> 682 -> 341 -> 1024 and 908 -> (454 -> ... -> 1024) are the two maximal trajectories containing all 12 initial values. a(8) = 11 since 2^(6*8+4) has 11 different initial values for Collatz trajectories leading to it. - Hartmut F. W. Hoft, Jun 24 2016
MATHEMATICA
trajectory[start_] := NestWhileList[If[OddQ[#], 3#+1, #/2]&, start, #!=1&]
fanSize[max_] := Module[{active={max}, fan={}, current}, While[active!={}, current=First[active]; active=Rest[active]; AppendTo[fan, current]; If[2*current<=max, AppendTo[active, 2*current]]; If[Mod[current, 3]==1 && OddQ[(current-1)/3] && current>4, AppendTo[active, (current-1)/3]]]; Length[fan]]/; max==Max[trajectory[max]]
a105730[low_, high_] := Map[fanSize[2^(6#+4)]&, Range[low, high]]
a105730[0, 89] (* Hartmut F. W. Hoft, Jun 24 2016 *)
CROSSREFS
KEYWORD
easy,nonn,less
AUTHOR
David Wasserman, Apr 18 2005
STATUS
approved