

A074590


Number of primitive solutions to n = x^2 + y^2 + z^2 (i.e., with gcd(x,y,z) = 1).


2



1, 6, 12, 8, 0, 24, 24, 0, 0, 24, 24, 24, 0, 24, 48, 0, 0, 48, 24, 24, 0, 48, 24, 0, 0, 24, 72, 24, 0, 72, 48, 0, 0, 48, 48, 48, 0, 24, 72, 0, 0, 96, 48, 24, 0, 48, 48, 0, 0, 48, 72, 48, 0, 72, 72, 0, 0, 48, 24, 72, 0, 72, 96, 0, 0, 96, 96, 24, 0, 96, 48, 0, 0, 48, 120
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


REFERENCES

See A005875 for references.
E. Grosswald, Representations of Integers as Sums of Squares. SpringerVerlag, NY, 1985, p. 54.


LINKS

T. D. Noe, Table of n, a(n) for n = 0..10000
Index entries for sequences related to sums of squares


FORMULA

n is representable as the sum of 3 squares if and only if n is not of the form 4^a (8k + 7) (cf. A000378).
A005875(n) = Sum_{d^2n} a(n/d^2).
Let h = number of classes of primitive binary quadratic forms, corresponding to the discriminant D = n if n = 3 (mod 8), D = 4n if n = 1, 2, 5, 6 (mod 8) and let d_1 = 1/2, d_3 = 1/3, d_n = 1 otherwise. Then a(n) = 12 h d_n, if n = 1, 2, 5, 6 (mod 8), 24 h d_n, if n = 3 (mod 8). (Grosswald)
Also, if n is squarefree and (r/n) is the Jacobi symbol, a(n) = 24 sum(r = 1, [n/4], (r/n)) if n = 1 (mod 4), 8 sum(r = 1, [n/2], (r/n)) if n = 3 (mod 8). (Grosswald)


EXAMPLE

G.f. = 1 + 6*x + 12*x^2 + 8*x^3 + 24*x^5 + 24*x^6 + 24*x^9 + 24*x^10 + 24*x^11 + ...


MATHEMATICA

a[n_] := (r = Reduce[ GCD[x, y, z] == 1 && n == x^2 + y^2 + z^2, {x, y, z}, Integers]; If[ r === False, 0, Length[ {ToRules[r]} ] ] ); a[0] = 1; Table[ a[n], {n, 0, 100}] (* JeanFrançois Alcover, Jan 13 2012 *)
a[ n_] := If[ n < 1, Boole[n == 0], Length @ Select[ {x, y, z} /. FindInstance[ n == x^2 + y^2 + z^2, {x, y, z}, Integers, 10^9], 1 == GCD @@ # &]]; (* Michael Somos, May 21 2015 *)


CROSSREFS

Cf. A005875 (all solutions).
Sequence in context: A175375 A175365 A029769 * A272966 A105730 A213384
Adjacent sequences: A074587 A074588 A074589 * A074591 A074592 A074593


KEYWORD

nonn,easy,nice


AUTHOR

N. J. A. Sloane, Dec 03 2002


EXTENSIONS

More terms from Vladeta Jovovic, Dec 04 2002


STATUS

approved



