login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A175365
Number of integer triples (x,y,z) satisfying |x|^3 + |y|^3 + |z|^3 = n, -n <= x,y,z <= n.
5
1, 6, 12, 8, 0, 0, 0, 0, 6, 24, 24, 0, 0, 0, 0, 0, 12, 24, 0, 0, 0, 0, 0, 0, 8, 0, 0, 6, 24, 24, 0, 0, 0, 0, 0, 24, 48, 0, 0, 0, 0, 0, 0, 24, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 24, 0, 0, 0, 0, 0, 0, 24, 0, 6, 24, 24, 0, 0, 0, 0, 0, 24, 48, 0, 0, 0, 0, 0, 0, 24, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 24, 48, 0, 0, 0
OFFSET
0,2
COMMENTS
A three-dimensional variant of A175362.
LINKS
FORMULA
G.f.: ( 1 + 2*Sum_{j>=1} x^(j^3) )^3.
a(n) = A175362(n) + 2*Sum_{k=1..floor(n^(1/3))} A175362(n - k^3). - Daniel Suteu, Aug 15 2021
EXAMPLE
a(2) = 12 counts (x,y,z) = (-1,-1,0), (-1,0,-1), (-1,0,1), (-1,1,0), (0,-1,-1), (0,-1,1), (0,1,-1), (0,1,1), (1,-1,0), (1,0,-1), (1,0,1) and (1,1,0).
MAPLE
N:= 100: # to get a(0) to a(N)
G:= (1+2*add(x^(j^3), j=1..floor(N^(1/3))))^3:
S:= series(G, x, N+1):
seq(coeff(S, x, j), j=0..N); # Robert Israel, Apr 08 2016
MATHEMATICA
CoefficientList[(1 + 2 Sum[x^(j^3), {j, 4}])^3, x] (* Michael De Vlieger, Apr 08 2016 *)
PROG
(PARI) a(n, k=3) = if(n==0, return(1)); if(k <= 0, return(0)); if(k == 1, return(ispower(n, 3))); my(count = 0); for(v = 0, sqrtnint(n, 3), count += (2 - (v == 0))*if(k > 2, a(n - v^3, k-1), if(ispower(n - v^3, 3), 2 - (n - v^3 == 0), 0))); count; \\ Daniel Suteu, Aug 15 2021
CROSSREFS
Sequence in context: A295122 A103698 A175375 * A029769 A074590 A272966
KEYWORD
nonn
AUTHOR
R. J. Mathar, Apr 24 2010
STATUS
approved