login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of integer triples (x,y,z) satisfying |x|^3 + |y|^3 + |z|^3 = n, -n <= x,y,z <= n.
5

%I #17 Aug 26 2021 18:20:50

%S 1,6,12,8,0,0,0,0,6,24,24,0,0,0,0,0,12,24,0,0,0,0,0,0,8,0,0,6,24,24,0,

%T 0,0,0,0,24,48,0,0,0,0,0,0,24,0,0,0,0,0,0,0,0,0,0,12,24,0,0,0,0,0,0,

%U 24,0,6,24,24,0,0,0,0,0,24,48,0,0,0,0,0,0,24,8,0,0,0,0,0,0,0,0,0,24,48,0,0,0

%N Number of integer triples (x,y,z) satisfying |x|^3 + |y|^3 + |z|^3 = n, -n <= x,y,z <= n.

%C A three-dimensional variant of A175362.

%H Robert Israel, <a href="/A175365/b175365.txt">Table of n, a(n) for n = 0..10000</a>

%F G.f.: ( 1 + 2*Sum_{j>=1} x^(j^3) )^3.

%F a(n) = A175362(n) + 2*Sum_{k=1..floor(n^(1/3))} A175362(n - k^3). - _Daniel Suteu_, Aug 15 2021

%e a(2) = 12 counts (x,y,z) = (-1,-1,0), (-1,0,-1), (-1,0,1), (-1,1,0), (0,-1,-1), (0,-1,1), (0,1,-1), (0,1,1), (1,-1,0), (1,0,-1), (1,0,1) and (1,1,0).

%p N:= 100: # to get a(0) to a(N)

%p G:= (1+2*add(x^(j^3),j=1..floor(N^(1/3))))^3:

%p S:= series(G,x,N+1):

%p seq(coeff(S,x,j),j=0..N); # _Robert Israel_, Apr 08 2016

%t CoefficientList[(1 + 2 Sum[x^(j^3), {j, 4}])^3, x] (* _Michael De Vlieger_, Apr 08 2016 *)

%o (PARI) a(n, k=3) = if(n==0, return(1)); if(k <= 0, return(0)); if(k == 1, return(ispower(n, 3))); my(count = 0); for(v = 0, sqrtnint(n, 3), count += (2 - (v == 0))*if(k > 2, a(n - v^3, k-1), if(ispower(n - v^3, 3), 2 - (n - v^3 == 0), 0))); count; \\ _Daniel Suteu_, Aug 15 2021

%K nonn

%O 0,2

%A _R. J. Mathar_, Apr 24 2010