login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A175362
Number of integer pairs (x,y) satisfying |x|^3 + |y|^3 = n, -n <= x,y <= n.
6
1, 4, 4, 0, 0, 0, 0, 0, 4, 8, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 8, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 8, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
OFFSET
0,2
COMMENTS
Cube variant of A004018.
Obviously, a(n) must be 4*k, for k >= 0, n > 0. - Altug Alkan, Apr 09 2016
From Robert Israel, Jan 26 2017: (Start)
a(k^3*n) >= a(n) for k >= 1.
a(n) >= 16 for n in A001235.
a(A011541(n)) >= 8*n. (End)
LINKS
FORMULA
G.f.: ( 1 + 2 * Sum_{j>=1} x^(j^3) )^2.
a(n^3) = 4 for n > 0. - Altug Alkan, Apr 09 2016
a(n) = 4*Sum_{k=1..floor(n^(1/3))} A010057(n - k^3), for n > 0. - Daniel Suteu, Aug 15 2021
EXAMPLE
a(2) = 4 counts (x,y) = (-1,1), (1,1), (-1,-1) and (1,-1).
a(9) = 8 counts (x,y) = (-2,-1), (-2,1), (-1,-2), (-1,2), (1,-2), (1,2), (2,-1) and (2,1).
MAPLE
N:= 200: # to get a(0)..a(N)
G:= (1+2*add(x^(j^3), j=1..floor(N^(1/3))))^2:
seq(coeff(G, x, j), j=0..N); # Robert Israel, Jan 26 2017
PROG
(PARI) a(n) = if(n==0, 1, 4*sum(k=1, sqrtnint(n, 3), ispower(n - k^3, 3))); \\ Daniel Suteu, Aug 16 2021
KEYWORD
nonn
AUTHOR
R. J. Mathar, Apr 24 2010
EXTENSIONS
Invalid claim that belonged to A004018 removed by R. J. Mathar, Apr 24 2010
STATUS
approved