login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A175372
Number of integer pairs (x,y) satisfying x^4 + y^4 = n.
2
1, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0
OFFSET
0,2
COMMENTS
A 4th-power variant of A004018 and A175362.
a(n) is nonzero when n appears in A004831. a(n) > 8 when n appears in A003824. - Mason Korb, Oct 06 2018
FORMULA
G.f.: (1 + 2*Sum_{j>=1} x^(j^4))^2.
MAPLE
seq(coeff(series((1+2*add(x^(j^4), j=1..n))^2, x, n+1), x, n), n = 0 .. 120); # Muniru A Asiru, Oct 07 2018
MATHEMATICA
CoefficientList[Series[(1 + 2*Sum[x^(j^4), {j, 1, 100}])^2, {x, 0, 120}], x] (* G. C. Greubel, Oct 06 2018 *)
PROG
(PARI) x='x+O('x^120); Vec((1+2*sum(j=1, 50, x^(j^4)))^2) \\ G. C. Greubel, Oct 06 2018
(Magma) m:=120; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!((1+2*(&+[x^(j^4): j in [1..50]]))^2)); // G. C. Greubel, Oct 06 2018
CROSSREFS
Cf. A003824, A004831 (where a(n) is nonzero).
Sequence in context: A340667 A344407 A197243 * A069191 A175362 A189973
KEYWORD
nonn
AUTHOR
R. J. Mathar, Apr 24 2010
STATUS
approved