login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A033497 a(n) = 2*a(n-1) + a(floor(n/2)), with a(1) = 1, a(2) = 2, a(3) = 4. 2
1, 2, 4, 10, 22, 48, 100, 210, 430, 882, 1786, 3620, 7288, 14676, 29452, 59114, 118438, 237306, 475042, 950966, 1902814, 3807414, 7616614, 15236848, 30477316, 60961920, 121931128, 243876932, 487768540, 975566532, 1951162516, 3902384146, 7804827406, 15609773250 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Harvey P. Dale, Table of n, a(n) for n = 1..1000

MAPLE

A033497 := proc(n) option remember; if n <= 3 then 2^(n-1) else A033497(n-1)+A033497(round(2*(n-1)/2))+A033497(round((n-1)/2)); fi; end;

MATHEMATICA

a[1]=1; a[2]=2; a[3]=4; a[n_]:=a[n]=2a[n-1]+a[Floor[n/2]]; Array[a, 40] (* Harvey P. Dale, Aug 08 2019 *)

a[n_]:= a[n]= If[n<4, 2^(n-1), 2*a[n-1] + a[Floor[n/2]]]; Table[a[n], {n, 40}] (* G. C. Greubel, Oct 14 2019 *)

PROG

(PARI) a=vector(99, i, i*(i-1)/2+1); for(n=4, #a, a[n]=2*a[n-1]+a[n\2]); a \\ Charles R Greathouse IV, Nov 29 2011

(MAGMA) a:= func< n | n lt 4 select 2^(n-1) else 2*Self(n-1) + Self(Floor(n/2)) >;

[a(n): n in [1..40]]; // G. C. Greubel, Oct 14 2019

(Sage)

@CachedFunction

def a(n):

    if (n<4): return 2^(n-1)

    else: return 2*a(n-1) +a(floor(n/2))

[a(n) for n in (1..40)] # G. C. Greubel, Oct 14 2019

(GAP)

a:= function(n)

    if n<4 then return 2^(n-1);

    else return 2*a(n-1) + a(Int(n/2));

    fi;

  end;

List([1..40], n-> a(n) ); # G. C. Greubel, Oct 14 2019

CROSSREFS

Cf. A033489, A033490.

Sequence in context: A091618 A181158 A018108 * A327471 A239075 A260916

Adjacent sequences:  A033494 A033495 A033496 * A033498 A033499 A033500

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 21 19:59 EDT 2021. Contains 345365 sequences. (Running on oeis4.)