login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A107505
Theta series of quadratic form with Gram matrix [ 2, 1, 0, 1; 1, 4, 1, 0; 0, 1, 4, -2; 1, 0, -2, 8].
9
1, 2, 6, 8, 14, 12, 24, 16, 30, 26, 36, 24, 56, 2, 48, 48, 62, 36, 78, 40, 84, 64, 72, 48, 120, 62, 6, 80, 112, 60, 144, 64, 126, 96, 108, 96, 182, 76, 120, 8, 180, 84, 192, 88, 168, 156, 144, 96, 248, 114, 186, 144, 14, 108, 240, 144, 240, 160, 180, 120
OFFSET
0,2
COMMENTS
Coefficients of a theta series associated with a certain "Haupt-form" of rank 4 and level 13.
The Gram matrix is denoted by A in Parry 1979 on page 165.
FORMULA
a(n) = 2 * b(n) where b() is multiplicative and b(13^e) = 1, b(p^e) = (p^(e+1) - 1) / (p - 1) otherwise. - Michael Somos, Mar 23 2012
G.f. is a period 1 Fourier series which satisfies f(-1 / (13 t)) = 13 (t/i)^2 f(t) where q = exp(2 Pi i t). - Michael Somos, Mar 23 2012
a(n) = 2 * A284587(n) if n>1. - Michael Somos, Oct 23 2019
EXAMPLE
G.f. = 1 + 2*q + 6*q^2 + 8*q^3 + 14*q^4 + 12*q^5 + 24*q^6 + 16*q^7 + 30*q^8 + ...
MATHEMATICA
a[n_] := If[n == 0, 1, 2 DivisorSigma[1, n/13^IntegerExponent[n, 13]]];
a /@ Range[0, 59] (* Jean-François Alcover, Oct 23 2019, after Michael Somos *)
a[n_] := If[n == 0, 1, 2 DivisorSum[n, Boole[!Divisible[#, 13]] # &]];
a /@ Range[0, 59] (* Jean-François Alcover, Oct 23 2019 *)
PROG
(PARI) {a(n) = if( n<1, n==0, 1, 2 * sigma(n / 13^valuation(n, 13)))}; /* Michael Somos, Mar 23 2012 */
(PARI) {a(n) = my(G); if( n<0, 0, G = [2, 1, 0, 1; 1, 4, 1, 0; 0, 1, 4, -2; 1, 0, -2, 8]; polcoeff( 1 + 2 * x * Ser(qfrep( G, n, 1)), n))}; /* Michael Somos, Mar 23 2012 */
(Sage) ModularForms( Gamma0(13), 2, prec=100).0; # Michael Somos, Jun 27 2013
(Magma) Basis( ModularForms( Gamma0(13), 2), 100) [1]; /* Michael Somos, Aug 15 2016 */
(Magma) [Coefficient(Basis(ModularForms(Gamma0(13), 2))[1], n) : n in [0..100] ]; // Vincenzo Librandi, Jun 27 2017
CROSSREFS
Cf. A284587.
Sequence in context: A289753 A002511 A074383 * A074400 A264598 A165607
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, May 28 2005
STATUS
approved