login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of distinct primes dividing gcd(A260443(n), A260443(n+1)): a(n) = A001221(A277198(n)).
5

%I #12 Oct 26 2016 15:18:40

%S 0,0,1,0,0,1,2,0,0,2,2,1,1,2,3,0,0,3,2,1,1,2,3,1,1,3,3,2,2,3,4,0,0,4,

%T 3,2,2,3,3,1,1,3,3,2,2,3,4,1,1,4,3,2,2,3,4,2,2,4,4,3,3,4,5,0,0,5,4,3,

%U 3,4,4,2,2,4,3,2,2,3,4,1,1,4,3,2,2,3,4,2,2,4,4,3,3,4,5,1,1,5,4,3,3,4,4,2,2,4,4,3,3,4,5,2,2,5,4,3,3,4,5,3,3

%N Number of distinct primes dividing gcd(A260443(n), A260443(n+1)): a(n) = A001221(A277198(n)).

%C a(n) = number of column positions where both row n and n+1 of A125184 have nonzero number present (when scanned from left), in other words, the number of k such that the term t^k has a nonzero coefficient in both Stern polynomials, B(n,t) and B(n+1,t).

%H Antti Karttunen, <a href="/A277327/b277327.txt">Table of n, a(n) for n = 0..8192</a>

%F a(n) = A001221(A277198(n)).

%F a(n) <= A277328(n).

%o (Scheme)

%o (define (A277327 n) (A001221 (A277198 n)))

%o ;; A standalone implementation:

%o (define (A277327 n) (length (filter positive? (gcd_of_exp_lists (A260443as_coeff_list n) (A260443as_coeff_list (+ 1 n))))))

%o (definec (A260443as_coeff_list n) (cond ((zero? n) (list)) ((= 1 n) (list 1)) ((even? n) (cons 0 (A260443as_coeff_list (/ n 2)))) (else (add_two_lists (A260443as_coeff_list (/ (- n 1) 2)) (A260443as_coeff_list (/ (+ n 1) 2))))))

%o (define (add_two_lists nums1 nums2) (let ((len1 (length nums1)) (len2 (length nums2))) (cond ((< len1 len2) (add_two_lists nums2 nums1)) (else (map + nums1 (append nums2 (make-list (- len1 len2) 0)))))))

%o (define (gcd_of_exp_lists nums1 nums2) (let ((len1 (length nums1)) (len2 (length nums2))) (cond ((< len1 len2) (gcd_of_exp_lists nums2 nums1)) (else (map min nums1 (append nums2 (make-list (- len1 len2) 0)))))))

%Y Cf. A001221, A125184, A260443, A277198, A277328.

%K nonn

%O 0,7

%A _Antti Karttunen_, Oct 13 2016