login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A051574
a(n) = number of k, 1<=k<=n, such that (n*k) divides binomial(n,k).
3
1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 3, 1, 3, 1, 1, 1, 3, 1, 5, 3, 2, 1, 1, 1, 2, 2, 2, 4, 7, 1, 2, 2, 5, 6, 3, 1, 6, 3, 2, 1, 4, 1, 2, 1, 2, 2, 2, 1, 4, 5, 9, 5, 8, 4, 7, 3, 9, 6, 8, 2, 6, 3, 1, 4, 11, 5, 9, 4, 5, 1, 4, 1, 7, 4, 2, 4, 8, 3, 4, 1, 6, 11, 15, 3, 7, 5, 4, 5, 9, 1, 5, 3, 2, 2, 1, 1, 4, 2, 7, 7, 19, 8
OFFSET
1,5
COMMENTS
k = 1 always works, so a(n) >= 1. a(n) = 1 for n = 1, 2, 3, 4, 6, 7, 8, 12, 14, 15, 16, 18, 22, 23, 24, 30, 36, 40, 42, 44, 48, 63, 70, 72, 80, 90, 95, 96, 120, 240. Are there any others? - Robert Israel, Feb 27 2024
LINKS
EXAMPLE
a(11)=3 since k=1, k=3, k=6 are only solutions to 11*k divides binomial(11,k).
MAPLE
f:= proc(n) nops(select(t -> binomial(n, t) mod (n*t) = 0, [$1..n])) end proc:
map(f, [$1..200]); # Robert Israel, Feb 27 2024
MATHEMATICA
nkb[n_]:=Total[Table[If[Divisible[Binomial[n, k], n*k], 1, 0], {k, n}]]; Array[ nkb, 110] (* Harvey P. Dale, Jul 06 2020 *)
PROG
(PARI) a(n) = sum(k=1, n, (binomial(n, k) % (n*k)) == 0); \\ Michel Marcus, May 18 2014
CROSSREFS
Cf. A051556 (similar definition).
Sequence in context: A277315 A277326 A050431 * A029386 A277325 A240837
KEYWORD
nonn
AUTHOR
Leroy Quet, Dec 11 1999
STATUS
approved