Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Feb 28 2024 00:59:28
%S 1,1,1,1,2,1,1,1,2,2,3,1,3,1,1,1,3,1,5,3,2,1,1,1,2,2,2,4,7,1,2,2,5,6,
%T 3,1,6,3,2,1,4,1,2,1,2,2,2,1,4,5,9,5,8,4,7,3,9,6,8,2,6,3,1,4,11,5,9,4,
%U 5,1,4,1,7,4,2,4,8,3,4,1,6,11,15,3,7,5,4,5,9,1,5,3,2,2,1,1,4,2,7,7,19,8
%N a(n) = number of k, 1<=k<=n, such that (n*k) divides binomial(n,k).
%C k = 1 always works, so a(n) >= 1. a(n) = 1 for n = 1, 2, 3, 4, 6, 7, 8, 12, 14, 15, 16, 18, 22, 23, 24, 30, 36, 40, 42, 44, 48, 63, 70, 72, 80, 90, 95, 96, 120, 240. Are there any others? - _Robert Israel_, Feb 27 2024
%H Robert Israel, <a href="/A051574/b051574.txt">Table of n, a(n) for n = 1..10000</a>
%e a(11)=3 since k=1, k=3, k=6 are only solutions to 11*k divides binomial(11,k).
%p f:= proc(n) nops(select(t -> binomial(n,t) mod (n*t) = 0, [$1..n])) end proc:
%p map(f, [$1..200]); # _Robert Israel_, Feb 27 2024
%t nkb[n_]:=Total[Table[If[Divisible[Binomial[n,k],n*k],1,0],{k,n}]]; Array[ nkb,110] (* _Harvey P. Dale_, Jul 06 2020 *)
%o (PARI) a(n) = sum(k=1, n, (binomial(n,k) % (n*k)) == 0); \\ _Michel Marcus_, May 18 2014
%Y Cf. A051556 (similar definition).
%K nonn
%O 1,5
%A _Leroy Quet_, Dec 11 1999