login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A277323
Even bisection of A260443 (the odd terms): a(n) = A260443(2*n).
4
1, 3, 5, 15, 7, 75, 35, 105, 11, 525, 245, 2625, 77, 3675, 385, 1155, 13, 5775, 2695, 128625, 847, 643125, 18865, 202125, 143, 282975, 29645, 1414875, 1001, 444675, 5005, 15015, 17, 75075, 35035, 15563625, 11011, 346644375, 2282665, 108945375, 1859, 544726875, 15978655, 12132553125, 121121, 3813088125, 2697695
OFFSET
0,2
LINKS
FORMULA
a(n) = A260443(2*n).
a(0) = 1; for n >= 1, a(n) = A003961(A260443(n)).
Other identities. For all n >= 0:
A007949(a(n)) = A000035(n).
A112765(a(n)) is the interleaving of A000035 and A005811, probably A101979.
MATHEMATICA
a[n_] := a[n] = Which[n < 2, n + 1, EvenQ@ n, Times @@ Map[#1^#2 & @@ # &, FactorInteger[#] /. {p_, e_} /; e > 0 :> {Prime[PrimePi@ p + 1], e}] - Boole[# == 1] &@ a[n/2], True, a[#] a[# + 1] &[(n - 1)/2]]; Table[a[2 n], {n, 0, 46}] (* Michael De Vlieger, Apr 05 2017 *)
PROG
(Scheme, two versions)
(define (A277323 n) (A260443 (* 2 n)))
(define (A277323 n) (if (zero? n) 1 (A003961 (A260443 n))))
KEYWORD
nonn
AUTHOR
Antti Karttunen, Oct 10 2016
STATUS
approved