login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Even bisection of A260443 (the odd terms): a(n) = A260443(2*n).
4

%I #14 Apr 06 2017 02:34:37

%S 1,3,5,15,7,75,35,105,11,525,245,2625,77,3675,385,1155,13,5775,2695,

%T 128625,847,643125,18865,202125,143,282975,29645,1414875,1001,444675,

%U 5005,15015,17,75075,35035,15563625,11011,346644375,2282665,108945375,1859,544726875,15978655,12132553125,121121,3813088125,2697695

%N Even bisection of A260443 (the odd terms): a(n) = A260443(2*n).

%H Antti Karttunen, <a href="/A277323/b277323.txt">Table of n, a(n) for n = 0..1024</a>

%F a(n) = A260443(2*n).

%F a(0) = 1; for n >= 1, a(n) = A003961(A260443(n)).

%F Other identities. For all n >= 0:

%F A007949(a(n)) = A000035(n).

%F A112765(a(n)) is the interleaving of A000035 and A005811, probably A101979.

%t a[n_] := a[n] = Which[n < 2, n + 1, EvenQ@ n, Times @@ Map[#1^#2 & @@ # &, FactorInteger[#] /. {p_, e_} /; e > 0 :> {Prime[PrimePi@ p + 1], e}] - Boole[# == 1] &@ a[n/2], True, a[#] a[# + 1] &[(n - 1)/2]]; Table[a[2 n], {n, 0, 46}] (* _Michael De Vlieger_, Apr 05 2017 *)

%o (Scheme, two versions)

%o (define (A277323 n) (A260443 (* 2 n)))

%o (define (A277323 n) (if (zero? n) 1 (A003961 (A260443 n))))

%Y Cf. A000035, A005811, A007949, A101979, A112765, A260443, A277324.

%K nonn

%O 0,2

%A _Antti Karttunen_, Oct 10 2016