Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #32 Apr 03 2022 13:49:21
%S 1,2,2,4,3,6,2,4,4,8,6,12,3,6,6,12,9,18,5,10,10,20,15,30,2,4,4,8,6,12,
%T 4,8,8,16,12,24,6,12,12,24,18,36,10,20,20,40,30,60,3,6,6,12,9,18,6,12,
%U 12,24,18,36,9,18,18,36,27,54,15,30,30,60,45,90,5,10,10,20,15,30,10,20,20,40,30,60,15,30,30,60,45,90,25,50,50,100,75
%N Prime-factorization representations of "factorial base level polynomials": a(0) = 1; for n >= 1, a(n) = 2^A257511(n) * A003961(a(A257684(n))).
%C These are prime-factorization representations of single-variable polynomials where the coefficient of term x^(k-1) (encoded as the exponent of prime(k) in the factorization of n) is equal to the number of times a nonzero digit k occurs in the factorial base representation of n. See the examples.
%H Antti Karttunen, <a href="/A275735/b275735.txt">Table of n, a(n) for n = 0..40320</a>
%H <a href="/index/Fa#facbase">Index entries for sequences related to factorial base representation</a>
%F a(0) = 1; for n >= 1, a(n) = 2^A257511(n) * A003961(a(A257684(n))).
%F Other identities and observations. For all n >= 0:
%F a(n) = A275734(A225901(n)).
%F A001221(a(n)) = A275806(n).
%F A001222(a(n)) = A060130(n).
%F A048675(a(n)) = A275729(n).
%F A051903(a(n)) = A264990(n).
%F A008683(a(A265349(n))) = -1 or +1 for all n >= 0.
%F A008683(a(A265350(n))) = 0 for all n >= 1.
%F From _Antti Karttunen_, Apr 03 2022: (Start)
%F A342001(a(n)) = A351954(n).
%F a(n) = A181819(A276076(n)).
%F (End)
%e For n = 0 whose factorial base representation (A007623) is also 0, there are no nonzero digits at all, thus there cannot be any prime present in the encoding, and a(0) = 1.
%e For n = 1 there is just one 1, thus a(1) = prime(1) = 2.
%e For n = 2 ("10", there is just one 1-digit, thus a(2) = prime(1) = 2.
%e For n = 3 ("11") there are two 1-digits, thus a(3) = prime(1)^2 = 4.
%e For n = 18 ("300") there is just one 3, thus a(18) = prime(3) = 5.
%e For n = 19 ("301") there is one 1 and one 3, thus a(19) = prime(1)*prime(3) = 2*5 = 10.
%e For n = 141 ("10311") there are three 1's and one 3, thus a(141) = prime(1)^3 * prime(3) = 2^3 * 5^1 = 40.
%o (Scheme, with memoization-macro definec)
%o (definec (A275735 n) (if (zero? n) 1 (* (A000079 (A257511 n)) (A003961 (A275735 (A257684 n))))))
%o (Python)
%o from sympy import prime
%o from operator import mul
%o import collections
%o def a007623(n, p=2): return n if n<p else a007623(n//p, p+1)*10 + n%p
%o def a(n):
%o y=collections.Counter(map(int, list(str(a007623(n)).replace("0", "")))).most_common()
%o return 1 if n==0 else reduce(mul, [prime(y[i][0])**y[i][1] for i in range(len(y))])
%o print([a(n) for n in range(101)]) # _Indranil Ghosh_, Jun 19 2017
%o (PARI)
%o A276076(n) = { my(i=0,m=1,f=1,nextf); while((n>0),i=i+1; nextf = (i+1)*f; if((n%nextf),m*=(prime(i)^((n%nextf)/f));n-=(n%nextf));f=nextf); m; };
%o A181819(n) = factorback(apply(e->prime(e),(factor(n)[,2])));
%o A275735(n) = A181819(A276076(n)); \\ _Antti Karttunen_, Apr 03 2022
%Y Cf. A000079, A001221, A001222, A003961, A007623, A008683, A181819, A225901, A257511, A257684, A265349, A265350, A264990, A275729, A275806, A351954.
%Y Cf. also A275725, A275733, A275734 for other such prime factorization encodings of A060117/A060118-related polynomials, and also A276076.
%Y Differs from A227154 for the first time at n=18, where a(18) = 5, while A227154(18) = 4.
%K nonn,base,look
%O 0,2
%A _Antti Karttunen_, Aug 09 2016