login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A034968
Minimal number of factorials that add to n.
87
0, 1, 1, 2, 2, 3, 1, 2, 2, 3, 3, 4, 2, 3, 3, 4, 4, 5, 3, 4, 4, 5, 5, 6, 1, 2, 2, 3, 3, 4, 2, 3, 3, 4, 4, 5, 3, 4, 4, 5, 5, 6, 4, 5, 5, 6, 6, 7, 2, 3, 3, 4, 4, 5, 3, 4, 4, 5, 5, 6, 4, 5, 5, 6, 6, 7, 5, 6, 6, 7, 7, 8, 3, 4, 4, 5, 5, 6, 4, 5, 5, 6, 6, 7, 5, 6, 6, 7, 7, 8, 6, 7, 7, 8, 8, 9, 4, 5, 5, 6, 6, 7, 5, 6, 6, 7
OFFSET
0,4
COMMENTS
Equivalently, sum of digits when n is written in factorial base (A007623).
Equivalently, a(0)...a(n!-1) give the total number of inversions of the permutations of n elements in lexicographic order (the factorial numbers in rising base are the inversion tables of the permutations and their sum of digits give the total number of inversions, see example and the Fxtbook link). - Joerg Arndt, Jun 17 2011
Also minimum number of adjacent transpositions needed to produce each permutation in the list A055089, or number of swappings needed to bubble sort each such permutation. (See A055091 for the minimum number of any transpositions.)
LINKS
F. T. Adams-Watters and F. Ruskey, Generating Functions for the Digital Sum and Other Digit Counting Sequences, JIS 12 (2009) 09.5.6.
Joerg Arndt, Matters Computational (The Fxtbook), fig.10-1.B on p.234.
Tyler Ball, Joanne Beckford, Paul Dalenberg, Tom Edgar, and Tina Rajabi, Some Combinatorics of Factorial Base Representations, J. Int. Seq., Vol. 23 (2020), Article 20.3.3.
FindStat - Combinatorial Statistic Finder, The number of inversions of a permutation
FORMULA
a(n) = n - Sum_{i>=2} (i-1)*floor(n/i!). - Benoit Cloitre, Aug 26 2003
G.f.: 1/(1-x)*Sum_{k>0} (Sum_{i=1..k} i*x^(i*k!))/(Sum_{i=0..k} x^(i*k!)). - Franklin T. Adams-Watters, May 13 2009
From Antti Karttunen, Aug 29 2016: (Start)
a(0) = 0; for n >= 1, a(n) = A099563(n) + a(A257687(n)).
a(0) = 0; for n >= 1, a(n) = A060130(n) + a(A257684(n)).
Other identities. For all n >= 0:
a(n) = A001222(A276076(n)).
a(n) = A276146(A225901(n)).
a(A000142(n)) = 1, a(A007489(n)) = n, a(A033312(n+1)) = A000217(n).
a(A056019(n)) = a(n).
A219651(n) = n - a(n).
(End)
EXAMPLE
a(205) = a(1!*1 + 3!*2 + 4!*3 + 5!*1) = 1+2+3+1 = 7. [corrected by Shin-Fu Tsai, Mar 23 2021]
From Joerg Arndt, Jun 17 2011: (Start)
n: permutation inv. table a(n) cycles
0: [ 0 1 2 3 ] [ 0 0 0 ] 0 (0) (1) (2) (3)
1: [ 0 1 3 2 ] [ 0 0 1 ] 1 (0) (1) (2, 3)
2: [ 0 2 1 3 ] [ 0 1 0 ] 1 (0) (1, 2) (3)
3: [ 0 2 3 1 ] [ 0 1 1 ] 2 (0) (1, 2, 3)
4: [ 0 3 1 2 ] [ 0 2 0 ] 2 (0) (1, 3, 2)
5: [ 0 3 2 1 ] [ 0 2 1 ] 3 (0) (1, 3) (2)
6: [ 1 0 2 3 ] [ 1 0 0 ] 1 (0, 1) (2) (3)
7: [ 1 0 3 2 ] [ 1 0 1 ] 2 (0, 1) (2, 3)
8: [ 1 2 0 3 ] [ 1 1 0 ] 2 (0, 1, 2) (3)
9: [ 1 2 3 0 ] [ 1 1 1 ] 3 (0, 1, 2, 3)
10: [ 1 3 0 2 ] [ 1 2 0 ] 3 (0, 1, 3, 2)
11: [ 1 3 2 0 ] [ 1 2 1 ] 4 (0, 1, 3) (2)
12: [ 2 0 1 3 ] [ 2 0 0 ] 2 (0, 2, 1) (3)
13: [ 2 0 3 1 ] [ 2 0 1 ] 3 (0, 2, 3, 1)
14: [ 2 1 0 3 ] [ 2 1 0 ] 3 (0, 2) (1) (3)
15: [ 2 1 3 0 ] [ 2 1 1 ] 4 (0, 2, 3) (1)
16: [ 2 3 0 1 ] [ 2 2 0 ] 4 (0, 2) (1, 3)
17: [ 2 3 1 0 ] [ 2 2 1 ] 5 (0, 2, 1, 3)
18: [ 3 0 1 2 ] [ 3 0 0 ] 3 (0, 3, 2, 1)
19: [ 3 0 2 1 ] [ 3 0 1 ] 4 (0, 3, 1) (2)
20: [ 3 1 0 2 ] [ 3 1 0 ] 4 (0, 3, 2) (1)
21: [ 3 1 2 0 ] [ 3 1 1 ] 5 (0, 3) (1) (2)
22: [ 3 2 0 1 ] [ 3 2 0 ] 5 (0, 3, 1, 2)
23: [ 3 2 1 0 ] [ 3 2 1 ] 6 (0, 3) (1, 2)
(End)
MAPLE
[seq(convert(fac_base(j), `+`), j=0..119)]; # fac_base and PermRevLexUnrank given in A055089. Perm2InversionVector in A064039
Or alternatively: [seq(convert(Perm2InversionVector(PermRevLexUnrank(j)), `+`), j=0..119)];
# third Maple program:
b:= proc(n, i) local q;
`if`(n=0, 0, b(irem(n, i!, 'q'), i-1)+q)
end:
a:= proc(n) local k;
for k while k!<n do od; b(n, k)
end:
seq(a(n), n=0..200); # Alois P. Heinz, Nov 15 2012
MATHEMATICA
a[n_] := Module[{s=0, i=2, k=n}, While[k > 0, k = Floor[n/i!]; s = s + (i-1)*k; i++]; n-s]; Table[a[n], {n, 0, 105}] (* Jean-François Alcover, Nov 06 2013, after Benoit Cloitre *)
PROG
(PARI) a(n)=local(k, r); k=2; r=0; while(n>0, r+=n%k; n\=k; k++); r \\ Franklin T. Adams-Watters, May 13 2009
(Scheme)
(define (A034968 n) (let loop ((n n) (i 2) (s 0)) (cond ((zero? n) s) (else (loop (quotient n i) (+ 1 i) (+ s (remainder n i)))))))
;; Antti Karttunen, Aug 29 2016
(Python)
def a(n):
k=2
r=0
while n>0:
r+=n%k
n=n//k
k+=1
return r
print([a(n) for n in range(201)]) # Indranil Ghosh, Jun 19 2017, after PARI program
(Python)
def A034968(n, p=2): return n if n<p else A034968(n//p, p+1) + n%p
print([A034968(n) for n in range(106)]) # Michael S. Branicky, Oct 27 2024
CROSSREFS
Cf. A368342 (partial sums), A001809 (sums of n! terms).
Cf. A227148 (positions of even terms), A227149 (of odd terms).
Differs from analogous A276150 for the first time at n=24.
Positions of records are A200748.
Sequence in context: A200747 A328481 A089293 * A341513 A276150 A275729
KEYWORD
nonn
EXTENSIONS
Additional comments from Antti Karttunen, Aug 23 2001
STATUS
approved