The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A034968 Minimal number of factorials that add to n. 76
 0, 1, 1, 2, 2, 3, 1, 2, 2, 3, 3, 4, 2, 3, 3, 4, 4, 5, 3, 4, 4, 5, 5, 6, 1, 2, 2, 3, 3, 4, 2, 3, 3, 4, 4, 5, 3, 4, 4, 5, 5, 6, 4, 5, 5, 6, 6, 7, 2, 3, 3, 4, 4, 5, 3, 4, 4, 5, 5, 6, 4, 5, 5, 6, 6, 7, 5, 6, 6, 7, 7, 8, 3, 4, 4, 5, 5, 6, 4, 5, 5, 6, 6, 7, 5, 6, 6, 7, 7, 8, 6, 7, 7, 8, 8, 9, 4, 5, 5, 6, 6, 7, 5, 6, 6, 7 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Equivalently, sum of digits when n is written in factorial base (A007623). Equivalently, a(0)...a(n!-1) give the total number of inversions of the permutations of n elements in lexicographic order (the factorial numbers in rising base are the inversion tables of the permutations and their sum of digits give the total number of inversions, see example and the Fxtbook link). - Joerg Arndt, Jun 17 2011 Also minimum number of adjacent transpositions needed to produce each permutation in the list A055089, or number of swappings needed to bubble sort each such permutation. (See A055091 for the minimum number of any transpositions.) LINKS Alois P. Heinz, Table of n, a(n) for n = 0..10000 F. T. Adams-Watters and F. Ruskey, Generating Functions for the Digital Sum and Other Digit Counting Sequences, JIS 12 (2009) 09.5.6. Joerg Arndt, Matters Computational (The Fxtbook), fig.10-1.B on p.234. Tyler Ball, Joanne Beckford, Paul Dalenberg, Tom Edgar, and Tina Rajabi, Some Combinatorics of Factorial Base Representations, J. Int. Seq., Vol. 23 (2020), Article 20.3.3. FindStat - Combinatorial Statistic Finder, The number of inversions of a permutation Index entries for sequences related to factorial base representation FORMULA a(n) = n - Sum_{i>=2} (i-1)*floor(n/i!). - Benoit Cloitre, Aug 26 2003 G.f.: 1/(1-x)*Sum_{k>0} (Sum_{i=1..k} i*x^(i*k!))/(Sum_{i=0..k} x^(i*k!)). - Franklin T. Adams-Watters, May 13 2009 From Antti Karttunen, Aug 29 2016: (Start) a(0) = 0; for n >= 1, a(n) = A099563(n) + a(A257687(n)). a(0) = 0; for n >= 1, a(n) = A060130(n) + a(A257684(n)). Other identities. For all n >= 0: a(n) = A001222(A276076(n)). a(n) = A276146(A225901(n)). a(A000142(n)) = 1, a(A007489(n)) = n, a(A033312(n+1)) = A000217(n). a(A056019(n)) = a(n). A219651(n) = n - a(n). (End) EXAMPLE a(205) = a(1!*1 + 3!*2 + 4!*3 + 5!*1) = 1+2+3+1 = 7. [corrected by Shin-Fu Tsai, Mar 23 2021] From Joerg Arndt, Jun 17 2011: (Start) n: permutation inv. table a(n) cycles 0: [ 0 1 2 3 ] [ 0 0 0 ] 0 (0) (1) (2) (3) 1: [ 0 1 3 2 ] [ 0 0 1 ] 1 (0) (1) (2, 3) 2: [ 0 2 1 3 ] [ 0 1 0 ] 1 (0) (1, 2) (3) 3: [ 0 2 3 1 ] [ 0 1 1 ] 2 (0) (1, 2, 3) 4: [ 0 3 1 2 ] [ 0 2 0 ] 2 (0) (1, 3, 2) 5: [ 0 3 2 1 ] [ 0 2 1 ] 3 (0) (1, 3) (2) 6: [ 1 0 2 3 ] [ 1 0 0 ] 1 (0, 1) (2) (3) 7: [ 1 0 3 2 ] [ 1 0 1 ] 2 (0, 1) (2, 3) 8: [ 1 2 0 3 ] [ 1 1 0 ] 2 (0, 1, 2) (3) 9: [ 1 2 3 0 ] [ 1 1 1 ] 3 (0, 1, 2, 3) 10: [ 1 3 0 2 ] [ 1 2 0 ] 3 (0, 1, 3, 2) 11: [ 1 3 2 0 ] [ 1 2 1 ] 4 (0, 1, 3) (2) 12: [ 2 0 1 3 ] [ 2 0 0 ] 2 (0, 2, 1) (3) 13: [ 2 0 3 1 ] [ 2 0 1 ] 3 (0, 2, 3, 1) 14: [ 2 1 0 3 ] [ 2 1 0 ] 3 (0, 2) (1) (3) 15: [ 2 1 3 0 ] [ 2 1 1 ] 4 (0, 2, 3) (1) 16: [ 2 3 0 1 ] [ 2 2 0 ] 4 (0, 2) (1, 3) 17: [ 2 3 1 0 ] [ 2 2 1 ] 5 (0, 2, 1, 3) 18: [ 3 0 1 2 ] [ 3 0 0 ] 3 (0, 3, 2, 1) 19: [ 3 0 2 1 ] [ 3 0 1 ] 4 (0, 3, 1) (2) 20: [ 3 1 0 2 ] [ 3 1 0 ] 4 (0, 3, 2) (1) 21: [ 3 1 2 0 ] [ 3 1 1 ] 5 (0, 3) (1) (2) 22: [ 3 2 0 1 ] [ 3 2 0 ] 5 (0, 3, 1, 2) 23: [ 3 2 1 0 ] [ 3 2 1 ] 6 (0, 3) (1, 2) (End) MAPLE [seq(convert(fac_base(j), `+`), j=0..119)]; # fac_base and PermRevLexUnrank given in A055089. Perm2InversionVector in A064039 Or alternatively: [seq(convert(Perm2InversionVector(PermRevLexUnrank(j)), `+`), j=0..119)]; # third Maple program: b:= proc(n, i) local q; `if`(n=0, 0, b(irem(n, i!, 'q'), i-1)+q) end: a:= proc(n) local k; for k while k! 0, k = Floor[n/i!]; s = s + (i-1)*k; i++]; n-s]; Table[a[n], {n, 0, 105}] (* Jean-François Alcover, Nov 06 2013, after Benoit Cloitre *) PROG (PARI) a(n)=local(k, r); k=2; r=0; while(n>0, r+=n%k; n\=k; k++); r \\ Franklin T. Adams-Watters, May 13 2009 (Scheme) (define (A034968 n) (let loop ((n n) (i 2) (s 0)) (cond ((zero? n) s) (else (loop (quotient n i) (+ 1 i) (+ s (remainder n i))))))) ;; Antti Karttunen, Aug 29 2016 (Python) def a(n): k=2 r=0 while n>0: r+=n%k n=n//k k+=1 return r print([a(n) for n in range(201)]) # Indranil Ghosh, Jun 19 2017, after PARI program CROSSREFS Cf. A368342 (partial sums), A001809 (sums of n! terms). Cf. A000142, A007489, A007623, A033312, A055091, A139365. Cf. A000217, A001222, A056019, A060130, A099563, A225901, A257684, A257687, A257694, A276076, A276146. Cf. A227148 (positions of even terms), A227149 (of odd terms). Cf. also A219650, A219651, A219666, A230423. Differs from analogous A276150 for the first time at n=24. Positions of records are A200748. Sequence in context: A200747 A328481 A089293 * A341513 A276150 A275729 Adjacent sequences: A034965 A034966 A034967 * A034969 A034970 A034971 KEYWORD nonn AUTHOR Erich Friedman EXTENSIONS Additional comments from Antti Karttunen, Aug 23 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 12 06:37 EDT 2024. Contains 375085 sequences. (Running on oeis4.)