login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A001340
E.g.f.: 2*exp(x)/(1-x)^3.
(Formerly M1858 N0736)
6
2, 8, 38, 212, 1370, 10112, 84158, 780908, 8000882, 89763320, 1094915222, 14431179908, 204423631178, 3097603939952, 50001759773870, 856665220770332, 15526612798028258, 296825612428239848, 5969385443426556422, 125983618731675924020, 2784204907403441680442
OFFSET
0,1
COMMENTS
a(n) = A001339 (n+1) - A001339 (n)..3-1=2, 11-3=8, 49-11=38... [Gary Detlefs, Jun 06 2010]
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
E. Biondi, L. Divieti, G. Guardabassi, Counting paths, circuits, chains and cycles in graphs: A unified approach, Canad. J. Math. 22 1970 22-35.
Philip Feinsilver and John McSorley, Zeons, Permanents, the Johnson Scheme, and Generalized Derangements, International Journal of Combinatorics, Volume 2011, Article ID 539030, 29 pages; doi:10.1155/2011/539030.
FORMULA
a(n) = 2 * A082030(n).
a(n) = floor((n+1)*(n+1)!*e) - floor(n*n!*e) [Gary Detlefs, Jun 06 2010]
a(n) = {exp(1)*(n^2+n+1)*n!} for n>0, where {x} is the neareast integer, proposed by Simon Plouffe, March 1993.
G.f.: (1-x)/x/Q(0) -1/x, where Q(k)= 1 - x - x*(k+2)/(1 - x*(k+1)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, Apr 22 2013
G.f.: W(0)/x - 1/x, where W(k) = 1 - x*(k+2)/( x*(k+3) - 1/(1 - x*(k+1)/( x*(k+1) - 1/W(k+1) ))); (continued fraction). - Sergei N. Gladkovskii, Aug 26 2013
Conjecture: a(n) +(-n-3)*a(n-1) +(n-1)*a(n-2)=0. - R. J. Mathar, May 03 2017
MATHEMATICA
nn = 20; Range[0, nn]! CoefficientList[Series[2*Exp[x]/(1 - x)^3, {x, 0, nn}], x] (* T. D. Noe, Jun 28 2012 *)
CROSSREFS
Sequence in context: A108246 A020031 A179323 * A275707 A058786 A096654
KEYWORD
nonn,easy
EXTENSIONS
Error in description corrected Jan 30 2008
More terms from N. J. A. Sloane, Jan 30 2008
STATUS
approved