login
A001338
-1 + Sum (k-1)! C(n,k), k = 1..n for n > 0, a(0) = 1.
(Formerly M1759 N0697)
4
1, 0, 2, 7, 23, 88, 414, 2371, 16071, 125672, 1112082, 10976183, 119481295, 1421542640, 18348340126, 255323504931, 3809950977007, 60683990530224, 1027542662934914, 18430998766219335, 349096664728623335, 6962409983976703336, 145841989688186383358
OFFSET
0,3
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
E. Biondi, L. Divieti, G. Guardabassi, Counting paths, circuits, chains and cycles in graphs: A unified approach, Canad. J. Math. 22 1970 22-35.
FORMULA
Conjecture: a(n) +(-n-1)*a(n-1) +2*(n-1)*a(n-2) +(-n+2)*a(n-3)=0. - R. J. Mathar, Feb 16 2014
a(n) = n*a(n-1) - (n-1)*a(n-2) - 1, with a sign reversal for n>=2. - Richard R. Forberg, Dec 16 2014
MATHEMATICA
Join[{1}, Table[-1 + Sum[(k - 1)! Binomial[n, k], {k, n}], {n, 20}]] (* T. D. Noe, Jun 28 2012 *)
CROSSREFS
Partial sums of A000522.
Equals A002104(n) + 1.
Sequence in context: A150339 A150340 A339038 * A150341 A150342 A124190
KEYWORD
nonn
STATUS
approved