The OEIS is supported by the many generous donors to the OEIS Foundation.


(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A001336 Number of n-step self-avoiding walks on f.c.c. lattice.
(Formerly M4867 N2082)
1, 12, 132, 1404, 14700, 152532, 1573716, 16172148, 165697044, 1693773924, 17281929564, 176064704412, 1791455071068, 18208650297396, 184907370618612, 1876240018679868, 19024942249966812, 192794447005403916, 1952681556794601732, 19767824914170222996 (list; graph; refs; listen; history; text; internal format)
B. D. Hughes, Random Walks and Random Environments, Oxford 1995, vol. 1, p. 460.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Andrey Zabolotskiy, Table of n, a(n) for n = 0..24 (from Schram et al.)
M. E. Fisher and M. F. Sykes, Excluded-volume problem and the Ising model of ferromagnetism, Phys. Rev. 114 (1959), 45-58.
B. D. Hughes, Random Walks and Random Environments, vol. 1, Oxford 1995, Tables and references for self-avoiding walks counts [Annotated scanned copy of several pages of a preprint or a draft of chapter 7 "The self-avoiding walk"]
J. L. Martin, M. F. Sykes and F. T. Hioe, Probability of initial ring closure for self-avoiding walks on the face-centered cubic and triangular lattices, J. Chem. Phys., 46 (1967), 3478-3481.
S. McKenzie, Self-avoiding walks on the face-centered cubic lattice, J. Phys. A 12 (1979), L267-L270.
S. Redner, Distribution functions in the interior of polymer chains, J. Phys. A 13 (1980), 3525-3541, doi:10.1088/0305-4470/13/11/023.
Raoul D. Schram, Gerard T. Barkema, Rob H. Bisseling and Nathan Clisby, Exact enumeration of self-avoiding walks on BCC and FCC lattices, J. Stat. Mech. (2017) 083208; arXiv:1703.09340 [cond-mat.stat-mech], 2017. See Table II.
Sequence in context: A165150 A002921 A199941 * A118475 A190873 A097826
a(15) from Bert Dobbelaere, Jan 13 2019
Terms a(16) and beyond from Schram et al. added by Andrey Zabolotskiy, Feb 02 2022

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 23 21:40 EST 2024. Contains 370288 sequences. (Running on oeis4.)