|
|
A294155
|
|
Numbers m such that there are precisely 14 groups of order m.
|
|
20
|
|
|
16, 36, 40, 104, 232, 296, 351, 424, 488, 808, 872, 1125, 1192, 1197, 1256, 1384, 1448, 1576, 1755, 1832, 2152, 2216, 2223, 2331, 2344, 2536, 2625, 2792, 2984, 3112, 3176, 3368, 3688, 3861, 4072, 4328, 4329, 4456, 4599, 4875, 4904, 5115, 5187, 5224, 5288, 5301
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
|
|
EXAMPLE
|
For m = 16, the 14 groups of order 16 are C16, C4 x C4, (C4 x C2) : C2, C4 : C4, C8 x C2, C8 : C2, D16, QD16, Q16, C4 x C2 x C2, C2 x D8, C2 x Q8, (C4 x C2) : C2, C2 x C2 x C2 x C2 and for n = 36 the 14 groups of order 36 are C9 : C4, C36, (C2 x C2) : C9, D36, C18 x C2, C3 x (C3 : C4), (C3 x C3) : C4, C12 x C3, (C3 x C3) : C4, S3 x S3, C3 x A4, C6 x S3, C2 x ((C3 x C3) : C2), C6 x C6 where C, D, Q mean Cyclic group, Dihedral group, Quaternion group of the stated order and S is the Symmetric group of the stated degree. The symbols x and : mean direct and semi-direct products respectively.
|
|
PROG
|
(GAP) A294155 := Filtered([1..2015], n -> NumberSmallGroups(n) = 14);
|
|
CROSSREFS
|
Cf. A000001. Cyclic numbers A003277. Numbers m such that there are precisely k groups of order m: A054395 (k=2), A055561 (k=3), A054396 (k=4), A054397 (k=5), A135850 (k=6), A249550 (k=7), A249551 (k=8), A249552 (k=9), A249553 (k=10), A249554 (k=11), A249555 (k=12), A292896 (k=13), this sequence (k=14), A294156 (k=15), A295161 (k=16), A294949 (k=17), A298909 (k=18), A298910 (k=19), A298911 (k=20).
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|