|
|
A249552
|
|
Numbers m such that there are precisely 9 groups of order m.
|
|
21
|
|
|
308, 532, 644, 836, 868, 1316, 1364, 1652, 1748, 1815, 1876, 1892, 2068, 2212, 2324, 2356, 2596, 2852, 2884, 2996, 3124, 3268, 3476, 3572, 3652, 3668, 3892, 3956, 4228, 4263, 4484, 4532, 4564, 4676, 4708, 5012, 5092, 5332, 5348, 5396, 5428, 5572, 5588, 5764, 5828, 6004, 6116, 6164, 6244, 6308, 6356, 6532
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
|
|
MAPLE
|
select(t -> GroupTheory:-NumAbelianGroups(t) <= 9 and GroupTheory:-NumGroups(t) = 9, [$1..10000]); # Robert Israel, Mar 26 2018
|
|
PROG
|
|
|
CROSSREFS
|
Cf. A000001. Cyclic numbers A003277. Numbers m such that there are precisely k groups of order m: A054395 (k=2), A055561 (k=3), A054396 (k=4), A054397 (k=5), A135850 (k=6), A249550 (k=7), A249551 (k=8), this sequence (k=9), A249553 (k=10), A249554 (k=11), A249555 (k=12), A292896 (k=13), A294155 (k=14), A294156 (k=15), A295161 (k=16), A294949 (k=17), A298909 (k=18), A298910 (k=19), A298911 (k=20).
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|