login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A249550
Numbers m such that there are precisely 7 groups of order m.
20
375, 605, 903, 1705, 2255, 2601, 2667, 3081, 3355, 3905, 3993, 4235, 4431, 4515, 4805, 5555, 6123, 6355, 6375, 6765, 7077, 7205, 7865, 7917, 7959, 8305, 8405, 8625, 8841, 9455, 9723, 9933, 9955, 10285, 10505, 10875, 11005, 11487, 11495, 11571, 11605, 11715, 11935, 12207, 12505, 13005, 13053, 13251, 13255, 13335, 13805, 14133
OFFSET
1,1
LINKS
H. U. Besche, B. Eick and E. A. O'Brien. A Millennium Project: Constructing Small Groups, Internat. J. Algebra and Computation, 12 (2002), 623-644.
FORMULA
Sequence is { m | A000001(m) = 7 }. - Muniru A Asiru, Nov 11 2017
EXAMPLE
For m = 375, the 7 groups are C375, ((C5 x C5) : C5) : C3, C75 x C5, C3 x ((C5 x C5) : C5), C3 x (C25 : C5), C5 x ((C5 x C5) : C3), C15 x C5 x C5 and for n = 605 the 7 groups are C121 : C5, C605, C11 x (C11 : C5), (C11 x C11) : C5, (C11 x C11) : C5, (C11 x C11) : C5, C55 x C11, where C means Cyclic group and the symbols x and : mean direct and semidirect products respectively. - Muniru A Asiru, Nov 11 2017
MATHEMATICA
Warning: The Mma command Select[Range[10^5], FiniteGroupCount[#]==7 &] gives wrong answers, since FiniteGroupCount[2601] does not return 7. - N. J. A. Sloane, Apr 11 2020
CROSSREFS
Cf. A000001. Cyclic numbers A003277. Numbers m such that there are precisely k groups of order m: A054395 (k=2), A055561 (k=3), A054396 (k=4), A054397 (k=5), A135850 (k=6), this sequence (k=7), A249551 (k=8), A249552 (k=9), A249553 (k=10), A249554 (k=11), A249555 (k=12), A292896 (k=13), A294155 (k=14), A294156 (k=15), A295161 (k=16), A294949 (k=17), A298909 (k=18), A298910 (k=19), A298911 (k=20).
Sequence in context: A269113 A268751 A369663 * A045200 A252071 A247263
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Nov 01 2014
EXTENSIONS
More terms from Muniru A Asiru, Oct 22 2017
Missing terms added by Muniru A Asiru, Nov 12 2017
STATUS
approved