login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A143928
2*p^2, for p an odd prime.
12
18, 50, 98, 242, 338, 578, 722, 1058, 1682, 1922, 2738, 3362, 3698, 4418, 5618, 6962, 7442, 8978, 10082, 10658, 12482, 13778, 15842, 18818, 20402, 21218, 22898, 23762, 25538, 32258, 34322, 37538, 38642, 44402, 45602, 49298, 53138, 55778, 59858
OFFSET
1,1
COMMENTS
For these numbers m, there are precisely 5 groups of order m, hence it is a subsequence of A054397. The 5 groups are C_{2*p^2}, C_2 X (C_p X C_p), C_p^2 : C_2 ~ D_{2*p^2}, and two non-isomorphic groups (C_p X C_p) : C_2, where C, D mean cyclic, dihedral groups of the stated order; the symbols ~, X and : mean isomorphic to, direct and semidirect products respectively. - Bernard Schott, Dec 10 2021
REFERENCES
Pascal Ortiz, Exercices d'Algèbre, Collection CAPES / Agrégation, Ellipses, problème 1.35, pp. 70-74, 2004.
LINKS
Michael Hilgemann and Siu-Hung Ng, Hopf algebras of dimension 2p^2, arXiv:0809.0699 [math.QA], 2008.
FORMULA
a(n) = A079704(n+1) for n>0.
EXAMPLE
a(1) = 2*A065091(1)^2 = 2*3^2 = 18.
a(2) = 2*A065091(2)^2 = 2*5^2 = 50.
a(3) = 2*A065091(3)^2 = 2*7^2 = 98.
MATHEMATICA
2#^2&/@Prime[Range[2, 40]] (* Harvey P. Dale, Jul 23 2021 *)
PROG
(Python)
from sympy import prime
def a(n): return 2*prime(n+1)**2
print([a(n) for n in range(1, 40)]) # Michael S. Branicky, Dec 10 2021
CROSSREFS
Subsequence of A079704.
Sequence in context: A102836 A217750 A180292 * A356743 A074173 A273459
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Sep 05 2008
STATUS
approved