login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A143928 2*p^2, for p an odd prime. 10
18, 50, 98, 242, 338, 578, 722, 1058, 1682, 1922, 2738, 3362, 3698, 4418, 5618, 6962, 7442, 8978, 10082, 10658, 12482, 13778, 15842, 18818, 20402, 21218, 22898, 23762, 25538, 32258, 34322, 37538, 38642, 44402, 45602, 49298, 53138, 55778, 59858 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

For these numbers m, there are precisely 5 groups of order m, hence it is a subsequence of A054397. The 5 groups are C_{2*p^2}, C_2 X (C_p X C_p), C_p^2 : C_2 ~ D_{2*p^2}, and two non-isomorphic groups (C_p X C_p) : C_2, where C, D mean cyclic, dihedral groups of the stated order; the symbols ~, X and : mean isomorphic to, direct and semidirect products respectively. - Bernard Schott, Dec 10 2021

REFERENCES

Pascal Ortiz, Exercices d'Algèbre, Collection CAPES / Agrégation, Ellipses, problème 1.35, pp. 70-74, 2004.

LINKS

Harvey P. Dale, Table of n, a(n) for n = 1..1000

Michael Hilgemann and Siu-Hung Ng, Hopf algebras of dimension 2p^2, arXiv:0809.0699 [math.QA], 2008.

FORMULA

a(n) = A079704(n+1) for n>0.

EXAMPLE

a(1) = 2*A065091(1)^2 = 2*3^2 = 18.

a(2) = 2*A065091(2)^2 = 2*5^2 = 50.

a(3) = 2*A065091(3)^2 = 2*7^2 = 98.

MATHEMATICA

2#^2&/@Prime[Range[2, 40]] (* Harvey P. Dale, Jul 23 2021 *)

PROG

(Python)

from sympy import prime

def a(n): return 2*prime(n+1)**2

print([a(n) for n in range(1, 40)]) # Michael S. Branicky, Dec 10 2021

CROSSREFS

Subsequence of A079704.

Cf. A054397, A065091.

Sequence in context: A102836 A217750 A180292 * A074173 A273459 A092068

Adjacent sequences:  A143925 A143926 A143927 * A143929 A143930 A143931

KEYWORD

easy,nonn

AUTHOR

Jonathan Vos Post, Sep 05 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 19 20:48 EST 2022. Contains 350466 sequences. (Running on oeis4.)