The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A143929 Eigentriangle by rows, termwise products of the natural numbers decrescendo and the bisected Fibonacci series. 1
 1, 2, 1, 3, 2, 3, 4, 3, 6, 8, 5, 4, 9, 16, 21, 6, 5, 12, 24, 42, 55, 7, 6, 15, 32, 63, 110, 144, 8, 7, 18, 40, 84, 165, 288, 377, 9, 8, 21, 48, 105, 220, 432, 754, 987, 10, 9, 24, 56, 126, 275, 576, 1131, 1974, 2584 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Row sums = even indexed Fibonacci terms A001906. Sum of n-th row terms = rightmost term of next row. LINKS FORMULA Given A004736: (1; 2,1; 3,2,1; 4,3,2,1; ...), we apply the termwise products of the sequence A088305(n-1)}_{n>=1} starting (1, 1, 3, 8, 21, ...). From Wolfdieter Lang, Jan 07 2021: (Start) T(n, m) = 0 if n < m; T(n, 1) = n, for n >= 1, and T(n, m) = F(2*(m-1))*(n-m+1) for n >= m >= 2, with F = A000045 (Fibonacci). G.f. column m: G(1, x) = x/(1-x)^2, G(m, x) = F(2*(m-1))*x^m/(1-x)^2, for m >= 2. (End) With offset 0: g.f. of row polynomials R(n, x) := Sum_{m=0..n} t(n, m)*x^m, that is, g.f. of triangle t(n,m) = T(n+1, m+1): G(z, x) = (1 - x*z)^2 / ((1 - z)^2*(1 - 3*x*z + (x*z)^2)). - Wolfdieter Lang, Apr 09 2021 EXAMPLE First rows of the triangle T(n, m), n >= 1, m = 1..n:   1;   2, 1;   3, 2,  3;   4, 3,  6,  8;   5, 4,  9, 16,  21;   6, 5, 12, 24,  42,  55;   7, 6, 15, 32,  63, 110, 144;   8, 7, 18, 40,  84, 165, 288, 377;   9, 8, 21, 48, 105, 220, 432, 754, 987;   ... Example: row 4 = (4, 3, 6, 8) = termwise product of (4, 3, 2, 1) and (1, 1, 3, 8). CROSSREFS Cf. A000045, A001906, A004736, A088305. Sequence in context: A115872 A133926 A144337 * A153583 A346797 A029163 Adjacent sequences:  A143926 A143927 A143928 * A143930 A143931 A143932 KEYWORD nonn,easy,tabl AUTHOR Gary W. Adamson, Sep 05 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 22 21:47 EST 2022. Contains 350504 sequences. (Running on oeis4.)