login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A115872 Square array where row n gives all solutions k > 0 to the cross-domain congruence n*k = A048720(A065621(n),k), zero sequence (A000004) if no such solutions exist. 24
1, 2, 1, 3, 2, 3, 4, 3, 6, 1, 5, 4, 7, 2, 7, 6, 5, 12, 3, 14, 3, 7, 6, 14, 4, 15, 6, 7, 8, 7, 15, 5, 28, 7, 14, 1, 9, 8, 24, 6, 30, 12, 15, 2, 15, 10, 9, 28, 7, 31, 14, 28, 3, 30, 7, 11, 10, 30, 8, 56, 15, 30, 4, 31, 14, 3, 12, 11, 31, 9, 60, 24, 31, 5, 60, 15, 6, 3, 13, 12, 48, 10, 62, 28, 56, 6, 62, 28, 12, 6, 5, 14, 13, 51, 11, 63, 30, 60, 7, 63, 30, 15, 7, 10, 7 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Here * stands for ordinary multiplication and X means carryless (GF(2)[X]) multiplication (A048720).

Square array is read by descending antidiagonals, as A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), etc.

Rows at positions 2^k are 1, 2, 3, ..., (A000027). Row 2n is equal to row n.

Numbers on each row give a subset of positions of zeros at the corresponding row of A284270. - Antti Karttunen, May 08 2019

LINKS

Antti Karttunen, Table of n, a(n) for n = 1..10585; the first 145 antidiagonals of array

Index entries for sequences defined by congruent products between domains N and GF(2)[X]

EXAMPLE

Fifteen initial terms of rows 1 - 19 are listed below:

   1:  1,  2,  3,   4,   5,   6,   7,   8,   9,  10,  11,  12,  13,  14,  15, ...

   2:  1,  2,  3,   4,   5,   6,   7,   8,   9,  10,  11,  12,  13,  14,  15, ...

   3:  3,  6,  7,  12,  14,  15,  24,  28,  30,  31,  48,  51,  56,  60,  62, ...

   4:  1,  2,  3,   4,   5,   6,   7,   8,   9,  10,  11,  12,  13,  14,  15, ...

   5:  7, 14, 15,  28,  30,  31,  56,  60,  62,  63, 112, 120, 124, 126, 127, ...

   6:  3,  6,  7,  12,  14,  15,  24,  28,  30,  31,  48,  51,  56,  60,  62, ...

   7:  7, 14, 15,  28,  30,  31,  56,  60,  62,  63, 112, 120, 124, 126, 127, ...

   8:  1,  2,  3,   4,   5,   6,   7,   8,   9,  10,  11,  12,  13,  14,  15, ...

   9: 15, 30, 31,  60,  62,  63, 120, 124, 126, 127, 240, 248, 252, 254, 255, ...

  10:  7, 14, 15,  28,  30,  31,  56,  60,  62,  63, 112, 120, 124, 126, 127, ...

  11:  3,  6, 12,  15,  24,  27,  30,  31,  48,  51,  54,  60,  62,  63,  96, ...

  12:  3,  6,  7,  12,  14,  15,  24,  28,  30,  31,  48,  51,  56,  60,  62, ...

  13:  5, 10, 15,  20,  21,  30,  31,  40,  42,  45,  47,  60,  61,  62,  63, ...

  14:  7, 14, 15,  28,  30,  31,  56,  60,  62,  63, 112, 120, 124, 126, 127, ...

  15: 15, 30, 31,  60,  62,  63, 120, 124, 126, 127, 240, 248, 252, 254, 255, ...

  16:  1,  2,  3,   4,   5,   6,   7,   8,   9,  10,  11,  12,  13,  14,  15, ...

  17: 31, 62, 63, 124, 126, 127, 248, 252, 254, 255, 496, 504, 508, 510, 511, ...

  18: 15, 30, 31,  60,  62,  63, 120, 124, 126, 127, 240, 248, 252, 254, 255, ...

  19:  7, 14, 28,  31,  56,  62,  63, 112, 119, 124, 126, 127, 224, 238, 248, ...

MATHEMATICA

X[a_, b_] := Module[{A, B, C, x},

     A = Reverse@IntegerDigits[a, 2];

     B = Reverse@IntegerDigits[b, 2];

     C = Expand[

        Sum[A[[i]]*x^(i-1), {i, 1, Length[A]}]*

        Sum[B[[i]]*x^(i-1), {i, 1, Length[B]}]];

     PolynomialMod[C, 2] /. x -> 2];

T[n_, k_] := Module[{x = BitXor[n-1, 2n-1], k0 = k},

     For[i = 1, True, i++, If[n*i == X[x, i],

     If[k0 == 1, Return[i], k0--]]]];

Table[T[n-k+1, k], {n, 1, 14}, {k, n, 1, -1}] // Flatten (* Jean-Fran├žois Alcover, Jan 04 2022 *)

PROG

(PARI)

up_to = 120;

A048720(b, c) = fromdigits(Vec(Pol(binary(b))*Pol(binary(c)))%2, 2);

A065621(n) = bitxor(n-1, n+n-1);

A115872sq(n, k) = { my(x = A065621(n)); for(i=1, oo, if((n*i)==A048720(x, i), if(1==k, return(i), k--))); };

A115872list(up_to) = { my(v = vector(up_to), i=0); for(a=1, oo, for(col=1, a, i++; if(i > up_to, return(v)); v[i] = A115872sq(col, (a-(col-1))))); (v); };

v115872 = A115872list(up_to);

A115872(n) = v115872[n]; \\ (Slow) - Antti Karttunen, May 08 2019

CROSSREFS

Transpose: A114388. First column: A115873.

Cf. A048720, A065621, A115857, A115871, A325565, A325566, A325567, A325568, A325570, A325571.

Cf. also arrays A277320, A277810, A277820, A284270.

A few odd-positioned rows: row 1: A000027, Row 3: A048717, Row 5: A115770 (? Checked for all values less than 2^20), Row 7: A115770, Row 9: A115801, Row 11: A115803, Row 13: A115772, Row 15: A115801 (? Checked for all values less than 2^20), Row 17: A115809, Row 19: A115874, Row 49: A114384, Row 57: A114386.

Sequence in context: A240450 A352129 A340351 * A133926 A144337 A143929

Adjacent sequences:  A115869 A115870 A115871 * A115873 A115874 A115875

KEYWORD

nonn,tabl

AUTHOR

Antti Karttunen, Feb 07 2006

EXTENSIONS

Example section added and the data section extended up to n=105 by Antti Karttunen, May 08 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 24 18:55 EDT 2022. Contains 356949 sequences. (Running on oeis4.)