login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A350247
Positive integers k such that the concatenation of k and 11 is the lesser of a pair of twin primes (i.e., a term of A001359).
1
3, 21, 27, 72, 90, 126, 183, 189, 192, 210, 216, 261, 267, 300, 315, 324, 342, 345, 360, 378, 387, 414, 477, 483, 540, 567, 633, 672, 681, 687, 714, 717, 744, 750, 777, 798, 828, 861, 870, 888, 918, 939, 987, 1011, 1029, 1038, 1080, 1182, 1260, 1266, 1281
OFFSET
1,1
COMMENTS
Every term is a multiple of 3.
Numbers k such that 100*k+11 and 100*k+13 are prime. - Chai Wah Wu, Jan 20 2022
EXAMPLE
311, 2111, 2711, 7211, and 9011 are terms of A001359.
MAPLE
terms := proc(n)
local k, p, L:
k, L := 0, []:
while numelems(L) < n do
k := k+1:
p := parse(cat(k, 11)):
if isprime(p) and isprime(p+2) then L := [op(L), k]: fi: od:
L: end:
MATHEMATICA
Select[Range[1282], AllTrue[# + {0, 2}, PrimeQ] &[100 # + 11] &] (* Michael De Vlieger, Dec 21 2021 *)
PROG
(Python)
from itertools import count, islice
from sympy import isprime
def A350247_gen(startvalue=3): # generator of terms >= startvalue
for n in count(max(3, startvalue+(3-startvalue%3)%3), 3):
if isprime(100*n+11) and isprime(100*n+13):
yield n
A350247_list = list(islice(A350247_gen(), 20)) # Chai Wah Wu, Jan 20 2022
CROSSREFS
Sequence in context: A273481 A050586 A074217 * A062219 A091103 A363409
KEYWORD
nonn,base
AUTHOR
STATUS
approved