login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A129625
Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+233)^2 = y^2.
5
0, 75, 432, 699, 1092, 3115, 4660, 6943, 18724, 27727, 41032, 109695, 162168, 239715, 639912, 945747, 1397724, 3730243, 5512780, 8147095, 21742012, 32131399, 47485312, 126722295, 187276080, 276765243, 738592224, 1091525547, 1613106612
OFFSET
1,2
COMMENTS
Also values x of Pythagorean triples (x, x+233, y).
Corresponding values y of solutions (x, y) are in A157297.
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (251+66*sqrt(2))/233 for n mod 3 = {1, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (82611+44030*sqrt(2))/233^2 for n mod 3 = 0.
FORMULA
a(n) = 6*a(n-3) -a(n-6) +466 for n > 6; a(1)=0, a(2)=75, a(3)=432, a(4)=699, a(5)=1092, a(6)=3115.
G.f.: x*(75 +357*x +267*x^2 -57*x^3 -119*x^4 -57*x^5)/((1-x)*(1 -6*x^3 +x^6)).
a(3*k+1) = 233*A001652(k) for k >= 0.
MATHEMATICA
LinearRecurrence[{1, 0, 6, -6, 0, -1, 1}, {0, 75, 432, 699, 1092, 3115, 4660}, 50] (* G. C. Greubel, Mar 29 2018 *)
PROG
(PARI) {forstep(n=0, 1700000000, [3, 1], if(issquare(2*n^2+466*n+54289), print1(n, ", ")))};
(Magma) I:=[0, 75, 432, 699, 1092, 3115, 4660]; [n le 7 select I[n] else Self(n-1) + 6*Self(n-3) - 6*Self(n-4) - Self(n-6) + Self(n-7): n in [1..30]]; // G. C. Greubel, Mar 29 2018
CROSSREFS
Cf. A157297, A001652, A129288, A129289, A129298, A156035 (decimal expansion of 3+2*sqrt(2)), A157298 (decimal expansion of (251+66*sqrt(2))/233), A157299 (decimal expansion of (82611+44030*sqrt(2))/233^2).
Sequence in context: A193252 A223452 A015223 * A133382 A199901 A251249
KEYWORD
nonn,easy
AUTHOR
Mohamed Bouhamida, May 30 2007
EXTENSIONS
Edited and two terms added by Klaus Brockhaus, Apr 11 2009
STATUS
approved