login
A129623
Numbers which are the product of a non-palindrome and its reversal, where leading zeros are not allowed.
2
252, 403, 574, 736, 765, 976, 1008, 1207, 1300, 1458, 1462, 1612, 1729, 1855, 1944, 2268, 2296, 2430, 2668, 2701, 2944, 3154, 3478, 3627, 3640, 4032, 4275, 4606, 4930, 5092, 5605, 5848, 6624, 6786, 7663, 8722, 20502, 23632, 26962, 30492, 31003, 34222
OFFSET
1,1
COMMENTS
The smallest square in this sequence is 63504 = 252*252 = 144*441.
LINKS
Michael S. Branicky, Table of n, a(n) for n = 1..11195 (terms < 10^9)
EXAMPLE
252 = 12*21.
MATHEMATICA
Take[Union[ Transpose[ Select[Table[{n, n* FromDigits[Reverse[IntegerDigits[n]]]}, {n, 1000}], Mod[ #[[1]], 10] != 0 && #[[1]] != FromDigits[Reverse[IntegerDigits[ #[[1]]]]] &]][[2]]], 100]
upto2ndigits@n_ := Union@(If[(i = IntegerReverse@#) > #, i*#, Nothing] & /@Range@(10^n - 1)); upto2ndigits@3 (* Hans Rudolf Widmer, Sep 06 2024 *)
PROG
(Python)
from sympy import divisors
def ok(n): return any(n==d*int(s[::-1]) for d in divisors(n)[1:-1] if (s:=str(d))!=s[::-1] and s[-1]!="0")
print([k for k in range(36000) if ok(k)]) # Michael S. Branicky, Sep 07 2024
(Python) # instantly generates 44185 terms with n = 5
def aupto2ndigits(n): return(sorted(set(i*int(s[::-1]) for i in range(12, 10**n) if i%10 != 0 and (s:=str(i)) != s[::-1])))
print(aupto2ndigits(2))
CROSSREFS
Sequence in context: A104396 A207373 A072443 * A062904 A032800 A024749
KEYWORD
base,nonn
AUTHOR
Tanya Khovanova, May 30 2007
EXTENSIONS
Offset corrected by Stefano Spezia, Sep 07 2024
STATUS
approved