This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A104396 Sums of 6 distinct positive pentatope numbers (A000332). 4
 252, 336, 392, 427, 447, 456, 457, 461, 512, 547, 567, 577, 581, 596, 621, 631, 651, 661, 665, 677, 687, 707, 712, 717, 721, 732, 742, 746, 752, 756, 761, 772, 776, 786, 796, 816, 826, 830, 841, 852, 872, 881, 882, 886, 897, 907, 916, 917, 921, 932 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Pentatope number Ptop(n) = binomial(n+3,4) = n*(n+1)*(n+2)*(n+3)/24. Hyun Kwang Kim asserts that every positive integer can be represented as the sum of no more than 8 pentatope numbers; but in this sequence we are only concerned with sums of nonzero distinct pentatope numbers. REFERENCES Conway, J. H. and Guy, R. K. The Book of Numbers. New York: Springer-Verlag, pp. 55-57, 1996. LINKS Hyun Kwang Kim, On Regular Polytope Numbers, Proc. Amer. Math. Soc., 131 (2003), 65-75. J. V. Post, Table of Polytope Numbers, Sorted, Through 1,000,000. Eric Weisstein's World of Mathematics, Pentatope Number. FORMULA a(n) = Ptop(f) + Ptop(g) + Ptop(h) + Ptop(i) + Ptop(j) + Ptop(k) for some positive f=/=g=/=h=/=i=/=j=/=k and Ptop(n) = binomial(n+3,4). CROSSREFS Cf. A000332, A100009, A102857, A104392, A104393, A104394, A104395. Sequence in context: A045182 A046331 A066695 * A207373 A072443 A129623 Adjacent sequences:  A104393 A104394 A104395 * A104397 A104398 A104399 KEYWORD easy,nonn AUTHOR Jonathan Vos Post, Mar 05 2005 EXTENSIONS Extended by Ray Chandler, Mar 05 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 20 07:33 EDT 2019. Contains 328252 sequences. (Running on oeis4.)